Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Tag: Manual revert
 
(103 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Recent years have witnessed the wide adoption of RDMA in the cloud to accelerate first-party workloads and achieve cost savings by freeing up CPU cycles. Now cloud providers are working towards supporting RDMA in general-purpose guest VMs to benefit third-party workloads. To this end, cloud providers must provide strong performance isolation so that the RDMA workloads of one tenant do not adversely impact the RDMA performance of another tenant. Despite many efforts on network performance isolation in the public cloud, we find that RDMA brings unique challenges due to its complex NIC microarchitecture resources (e.g., the NIC cache).In this paper, we aim to systematically understand the impact of RNIC microarchitecture resources on performance isolation. We present a model that represents how RDMA operations use RNIC resources. Using this model, we develop a test suite to evaluate RDMA performance isolation solutions. Our test suite can break all existing solutions in various scenarios. Our results are acknowledged and reproduced by one of the largest RDMA NIC vendors. Finally, based on the test results, we summarize new insights on designing future RDMA performance isolation solutions.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=NSDI '23
|confname = Mobisys'24
|link=https://www.usenix.org/conference/nsdi23/presentation/kong
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=Understanding RDMA Microarchitecture Resources for Performance Isolation
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Xinyu Zhang
|speaker= Zhenhua
|date=2023-10-19}}
|date=2025-04-18
}}
{{Latest_seminar
{{Latest_seminar
|abstract=LoRa networks have been deployed in many orchards for environmental monitoring and crop management. An accurate propagation model is essential for efficiently deploying a LoRa network in orchards, e.g., determining gateway coverage and sensor placement. Although some propagation models have been studied for LoRa networks, they are not suitable for orchard environments, because they do not consider the shadowing effect on wireless propagation caused by the ground and tree canopies. This paper presents FLog, a propagation model for LoRa signals in orchard environments. FLog leverages a unique feature of orchards, i.e., all trees have similar shapes and are planted regularly in space. We develop a 3D model of the orchards. Once we have the location of a sensor and a gateway, we know the mediums that the wireless signal traverse. Based on this knowledge, we generate the First Fresnel Zone (FFZ) between the sender and the receiver. The intrinsic path loss exponents (PLE) of all mediums can be combined into a classic Log-Normal Shadowing model in the FFZ. Extensive experiments in almond orchards show that FLog reduces the link quality estimation error by 42.7% and improves gateway coverage estimation accuracy by 70.3%, compared with a widely-used propagation model.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=IPSN '23
|confname = TC'24
|link=https://dl.acm.org/doi/10.1145/3583120.3586969
|link = https://ieeexplore.ieee.org/document/10360355
|title=Link Quality Modeling for LoRa Networks in Orchards
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Jiacheng Li
|speaker=Mengfan
|date=2023-10-19}}
|date=2025-04-18
{{Latest_seminar
}}
|abstract=Cooperative perception significantly enhances the perception performance of connected autonomous vehicles. Instead of purely relying on local sensors with limited range, it enables multiple vehicles and roadside infrastructures to share sensor data to perceive the environment collaboratively. Through our study, we realize that the performance of cooperative perception systems is limited in real-world deployment due to (1) out-of-sync sensor data during data fusion and (2) inaccurate localization of occluded areas. To address these challenges, we develop RAO, an innovative, effective, and lightweight cooperative perception system that merges asynchronous sensor data from different vehicles through our novel designs of motion-compensated occupancy flow prediction and on-demand data sharing, improving both the accuracy and coverage of the perception system. Our extensive evaluation, including real-world and emulation-based experiments, demonstrates that RAO outperforms state-of-the-art solutions by more than 34% in perception coverage and by up to 14% in perception accuracy, especially when asynchronous sensor data is present. RAO consistently performs well across a wide variety of map topologies and driving scenarios. RAO incurs negligible additional latency (8.5 ms) and low data transmission overhead (10.9 KB per frame), making cooperative perception feasible.
|confname=MobiCom '23
|link=https://dl.acm.org/doi/abs/10.1145/3570361.3613271
|title=Robust Real-time Multi-vehicle Collaboration on Asynchronous Sensors
|speaker=Yang Wang
|date=2023-10-19}}
{{Latest_seminar
|abstract=Serverless computing provides fine-grained resource elasticity for data analytics---a job can flexibly scale its resources for each stage, instead of sticking to a fixed pool of resources throughout its lifetime. Due to different data dependencies and different shuffling overheads caused by intra- and inter-server communication, the best degree of parallelism (DoP) for each stage varies based on runtime conditions. We present Ditto, a job scheduler for serverless analytics that leverages fine-grained resource elasticity to optimize for job completion time (JCT) and cost. The key idea of Ditto is to use a new scheduling granularity---stage group---to decouple parallelism configuration from function placement. Ditto bundles stages into stage groups based on their data dependencies and IO characteristics. It exploits the parallelized time characteristics of the stages to determine the parallelism configuration, and prioritizes the placement of stage groups with large shuffling traffic, so that the stages in these groups can leverage zero-copy intra-server communication for efficient shuffling. We build a system prototype of Ditto and evaluate it with a variety of benchmarking workloads. Experimental results show that Ditto outperforms existing solutions by up to 2.5× on JCT and up to 1.8× on cost.
|confname=SIGCOMM '23
|link=https://dl.acm.org/doi/abs/10.1145/3603269.3604816
|title=Ditto: Efficient Serverless Analytics with Elastic Parallelism
|speaker=Mengqi Ma
|date=2023-10-19}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}