Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(75 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-12-14 Thursday 9:00-10:30'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Low-density parity-check (LDPC) codes have been widely used for Forward Error Correction (FEC) in wireless networks because they can approach the capacity of wireless links with lightweight encoding complexity. Although LoRa networks have been developed for many applications, they still adopt simple FEC codes, i.e., Hamming codes, which provide limited FEC capacity, causing unreliable data transmissions and high energy consumption of LoRa nodes. To close this gap, this paper develops LLDPC, which realizes LDPC coding in LoRa networks. Three challenges are addressed. 1) LoRa employs Chirp Spread Spectrum (CSS) modulation, which only provides hard demodulation results without soft information. However, LDPC requires the Log-Likelihood Ratio (LLR) of each received bit for decoding. We develop an LLR extractor for LoRa CSS. 2) Some erroneous bits may have high LLRs (i.e., wrongly confident in their correctness), significantly affecting the LDPC decoding efficiency. We use symbol-level information to fine-tune the LLRs of some bits to improve the LDPC decoding efficiency. 3) Soft Belief Propagation (SBP) is typically used as the LDPC decoding algorithm. It involves heavy iterative computation, resulting in a long decoding latency, which prevents the gateway from sending timely an acknowledgment. We take advantage of recent advances in graph neural networks for fast belief propagation in LDPC decoding. Extensive simulations on a large-scale synthetic dataset and in-filed experiments reveal that LLDPC can extend the lifetime of the default LoRa by 86.7% and reduce the decoding latency of the SBP algorithm by 58.09×.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname=SenSys' 22
|confname =SIGCOMM'24
|link=https://dl.acm.org/doi/pdf/10.1145/3560905.3568547
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title=LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks
|title= In-Network Address Caching for Virtual Networks
|speaker=Wengliang
|speaker=Dongting
|date=2023-12-14}}
|date=2024-12-06
{{Latest_seminar
}}{{Latest_seminar
|abstract=Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance. The single update focuses on processing one update event at a time, i.e. , updating a set of flows from their initial routes to target routes, but it fails to handle continuously arriving update events in time incurred by high-frequency network changes. On the contrary, the continuous update proposed in “Update Algebra” can handle multiple update events concurrently and respond to the network condition changes at all times. However, “Update Algebra” only guarantees the blackhole-free and loop-free update. The congestion-free property cannot be respected. In this paper, we propose Coeus to achieve the continuous update while maintaining consistency, i.e. , ensuring the blackhole-free, loop-free, and congestion-free properties simultaneously. Firstly, we establish the continuous update model based on the update operations in update events. With the update model, we dynamically reconstruct the operation dependency graph (ODG) to capture the relationship between update operations and link utilization variations. Then, we develop a composition algorithm to eliminate redundant operations in update events. To further speed up the update procedure, we present a partition algorithm to split the operation nodes of the ODG into a series of suboperation nodes that can be executed independently. The partition algorithm is proven to be optimal. Finally, extensive evaluations show that Coeus can improve the update speed by at least 179% and reduce redundant operations by at least 52% compared with state-of-the-art approaches when the arrival rate of update events equals three times per second.
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|confname=ToN' 22
|confname = IDEA
|link=https://ieeexplore.ieee.org/document/9690589/
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|title=Continuous Network Update With Consistency Guaranteed in Software-Defined Networks
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|speaker=Yaliang
|speaker=Mengyu
|date=2023-12-14}}
|date=2024-12-06
}}
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}