Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(91 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 9:00-10:30'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Low-density parity-check (LDPC) codes have been widely used for Forward Error Correction (FEC) in wireless networks because they can approach the capacity of wireless links with lightweight encoding complexity. Although LoRa networks have been developed for many applications, they still adopt simple FEC codes, i.e., Hamming codes, which provide limited FEC capacity, causing unreliable data transmissions and high energy consumption of LoRa nodes. To close this gap, this paper develops LLDPC, which realizes LDPC coding in LoRa networks. Three challenges are addressed. 1) LoRa employs Chirp Spread Spectrum (CSS) modulation, which only provides hard demodulation results without soft information. However, LDPC requires the Log-Likelihood Ratio (LLR) of each received bit for decoding. We develop an LLR extractor for LoRa CSS. 2) Some erroneous bits may have high LLRs (i.e., wrongly confident in their correctness), significantly affecting the LDPC decoding efficiency. We use symbol-level information to fine-tune the LLRs of some bits to improve the LDPC decoding efficiency. 3) Soft Belief Propagation (SBP) is typically used as the LDPC decoding algorithm. It involves heavy iterative computation, resulting in a long decoding latency, which prevents the gateway from sending timely an acknowledgment. We take advantage of recent advances in graph neural networks for fast belief propagation in LDPC decoding. Extensive simulations on a large-scale synthetic dataset and in-filed experiments reveal that LLDPC can extend the lifetime of the default LoRa by 86.7% and reduce the decoding latency of the SBP algorithm by 58.09×.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname=SenSys' 22
|confname = Mobisys'24
|link=https://dl.acm.org/doi/pdf/10.1145/3560905.3568547
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title=LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Wengliang
|speaker= Zhenhua
|date=2023-12-21}}
|date=2025-04-18
{{Latest_seminar
}}
|abstract=Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance. The single update focuses on processing one update event at a time, i.e. , updating a set of flows from their initial routes to target routes, but it fails to handle continuously arriving update events in time incurred by high-frequency network changes. On the contrary, the continuous update proposed in “Update Algebra” can handle multiple update events concurrently and respond to the network condition changes at all times. However, “Update Algebra” only guarantees the blackhole-free and loop-free update. The congestion-free property cannot be respected. In this paper, we propose Coeus to achieve the continuous update while maintaining consistency, i.e. , ensuring the blackhole-free, loop-free, and congestion-free properties simultaneously. Firstly, we establish the continuous update model based on the update operations in update events. With the update model, we dynamically reconstruct the operation dependency graph (ODG) to capture the relationship between update operations and link utilization variations. Then, we develop a composition algorithm to eliminate redundant operations in update events. To further speed up the update procedure, we present a partition algorithm to split the operation nodes of the ODG into a series of suboperation nodes that can be executed independently. The partition algorithm is proven to be optimal. Finally, extensive evaluations show that Coeus can improve the update speed by at least 179% and reduce redundant operations by at least 52% compared with state-of-the-art approaches when the arrival rate of update events equals three times per second.
|confname=ToN' 22
|link=https://ieeexplore.ieee.org/document/9690589/
|title=Continuous Network Update With Consistency Guaranteed in Software-Defined Networks
|speaker=Yaliang
|date=2023-12-21}}
{{Latest_seminar
{{Latest_seminar
|abstract=With the reduced hardware costs of omnidirectional cameras and the proliferation of various extended reality applications, more and more 360° videos are being captured. To fully unleash their potential, advanced video analytics is expected to extract actionable insights and situational knowledge without blind spots from the videos. In this paper, we present OmniSense, a novel edge-assisted framework for online immersive video analytics. OmniSense achieves both low latency and high accuracy, combating the significant computation and network resource challenges of analyzing 360° videos. Motivated by our measurement insights into 360° videos, OmniSense introduces a lightweight spherical region of interest (SRoI) prediction algorithm to prune redundant information in 360° frames. Incorporating the video content and network dynamics, it then smartly scales vision models to analyze the predicted SRoIs with optimized resource utilization. We implement a prototype of OmniSense with commodity devices and evaluate it on diverse real-world collected 360° videos. Extensive evaluation results show that compared to resource-agnostic baselines, it improves the accuracy by 19.8% – 114.6% with similar end-to-end latencies. Meanwhile, it hits 2.0× – 2.4× speedups while keeping the accuracy on par with the highest accuracy of baselines.
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|confname=INFOCOM '23
|confname = TC'24
|link=https://ieeexplore.ieee.org/document/10229105
|link = https://ieeexplore.ieee.org/document/10360355
|title=OmniSense: Towards Edge-Assisted Online Analytics for 360-Degree Videos
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|speaker=Mengfan
|speaker=Mengfan
|date=2023-12-21}}
|date=2025-04-18
{{Latest_seminar
}}
|abstract=Remote Direct Memory Access (RDMA) is widely used in high-performance computing (HPC) and data center networks. In this paper, we first show that RDMA does not work well with existing load balancing algorithms because of its traffic flow characteristics and assumption of in-order packet delivery. We then propose ConWeave, a load balancing framework designed for RDMA. The key idea of ConWeave is that with the right design, it is possible to perform fine granularity rerouting and mask the effect of out-of-order packet arrivals transparently in the network datapath using a programmable switch. We have implemented ConWeave on a Tofino2 switch. Evaluations show that ConWeave can achieve up to 42.3% and 66.8% improvement for average and 99-percentile FCT, respectively compared to the state-of-the-art load balancing algorithms.
 
|confname=SIGCOMM '23
|link=https://dl.acm.org/doi/abs/10.1145/3603269.3604849
|title=Network Load Balancing with In-network Reordering Support for RDMA
|speaker=Jiyi
|date=2023-12-21}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}