Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(119 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 9:00-10:30'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=While a number of recent efforts have explored the use of "cloud offload" to enable deep learning on IoT devices, these have not assumed the use of duty-cycled radios like BLE. We argue that radio duty-cycling significantly diminishes the performance of existing cloud-offload methods. We tackle this problem by leveraging a previously unexplored opportunity to use early-exit offload enhanced with prioritized communication, dynamic pooling, and dynamic fusion of features. We show that our system, FLEET, achieves significant benefits in accuracy, latency, and compute budget compared to state-of-art local early exit, remote processing, and model partitioning schemes across a range of DNN models, datasets, and IoT platforms.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=MobiCom '23
|confname =ACL'24
|link=https://dl.acm.org/doi/10.1145/3570361.3592514
|link = https://arxiv.org/abs/2406.16441
|title=Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Yang Wang
|speaker=Bairong Liu
|date=2024-01-11}}
|date=2025-12-05
}}
{{Latest_seminar
{{Latest_seminar
|abstract=Provenance tracking has been widely used in the recent literature to debug system vulnerabilities and find the root causes behind faults, errors, or crashes over a running system. However, the existing approaches primarily developed graph-based models for provenance tracking over monolithic applications running directly over the operating system kernel. In contrast, the modern DevOps-based service-oriented architecture relies on distributed platforms, like serverless computing that uses container-based sandboxing over the kernel. Provenance tracking over such a distributed micro-service architecture is challenging, as the application and system logs are generated asynchronously and follow heterogeneous nomenclature and logging formats. This paper develops a novel approach to combining system and micro-services logs together to generate a Universal Provenance Graph (UPG) that can be used for provenance tracking over serverless architecture. We develop a Loadable Kernel Module (LKM) for runtime unit identification over the logs by intercepting the system calls with the help from the control flow graphs over the static application binaries. Finally, we design a regular expression-based log optimization method for reverse query parsing over the generated UPG. A thorough evaluation of the proposed UPG model with different benchmarked serverless applications shows the system’s effectiveness.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=INFOCOM '23
|confname =TMC'25
|link=https://ieeexplore.ieee.org/abstract/document/10228884
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title=DisProTrack: Distributed Provenance Tracking over Serverless Applications
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Xinyu
|speaker=Mengyu
|date=2024-01-11}}
|date=2025-12-05
{{Latest_seminar
}}
|abstract=While radio communication still dominates in 5G, light and radios are expected to complement each other in the coming 6G networks. Visible Light Communication (VLC) is therefore attracting a tremendous amount of attention from both academia and industry. Recent studies showed that the front camera of pervasive smartphones is an ideal candidate to serve as the VLC receiver. While promising, we observe a recent trend with smartphones that can greatly hinder the adoption of smartphones for VLC, i.e., smartphones are moving towards full-screen for the best user experience. This trend forces front cameras to be placed under the devices' screen---leading to the so-called Under-Screen Camera (USC)---but we observe a severe performance degradation in VLC with USC: the transmission range is reduced from a few meters to merely 0.04 m, and the throughput is decreased by more than 90%. To address this issue, we leverage the unique spatiotemporal characteristics of the rolling shutter effect on USC to design a pixel-sweeping algorithm to identify the sampling points with minimal interference from the translucent screen. We further propose a novel slope-boosting demodulation method to deal with color shift brought by the leakage interference. We build a proof-of-concept prototype using two commercial smart-phones. Experiment results show that our proposed design reduces the BER by two orders of magnitude on average and improves the data rate by 59×: from 914 b/s to 54.43 kb/s. The transmission range is extended by roughly 100×: from 0.04 m to 4.2 m.
|confname=MobiSys '23
|link=https://dl.acm.org/doi/abs/10.1145/3581791.3596855
|title=When VLC Meets Under-Screen Camera
|speaker=Jiacheng
|date=2024-01-11}}
{{Latest_seminar
|abstract=While recent work explored streaming volumetric content on-demand, there is little effort on live volumetric video streaming that bears the potential of bringing more exciting applications than its on-demand counterpart. To fill this critical gap, in this paper, we propose MetaStream, which is, to the best of our knowledge, the first practical live volumetric content capture, creation, delivery, and rendering system for immersive applications such as virtual, augmented, and mixed reality. To address the key challenge of the stringent latency requirement for processing and streaming a huge amount of 3D data, MetaStream integrates several innovations into a holistic system, including dynamic camera calibration, edge-assisted object segmentation, cross-camera redundant point removal, and foveated volumetric content rendering. We implement a prototype of MetaStream using commodity devices and extensively evaluate its performance. Our results demonstrate that MetaStream achieves low-latency live volumetric video streaming at close to 30 frames per second on WiFi networks. Compared to state-of-the-art systems, MetaStream reduces end-to-end latency by up to 31.7% while improving visual quality by up to 12.5%.
|confname=MobiCom '23
|link=https://dl.acm.org/doi/abs/10.1145/3570361.3592530
|title=MetaStream: Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time
|speaker=Jiale
|date=2024-01-11}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}