Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=In this paper, we focus on the problem of efficiently locating a target object described with free-form text using a mobile robot equipped with vision sensors (e.g., an RGBD camera). Conventional active visual search predefines a set of objects to search for, rendering these techniques restrictive in practice. To provide added flexibility in active visual searching, we propose a system where a user can enter target commands using free-form text; we call this system Zero-shot Active Visual Search (ZAVIS). ZAVIS detects and plans to search for a target object inputted by a user through a semantic grid map represented by static landmarks (e.g., desk or bed). For efficient planning of object search patterns, ZAVIS considers commonsense knowledge-based co-occurrence and predictive uncertainty while deciding which landmarks to visit first. We validate the proposed method with respect to SR (success rate) and SPL (success weighted by path length) in both simulated and real-world environments. The proposed method outperforms previous methods in terms of SPL in simulated scenarios, and we further demonstrate ZAVIS with a Pioneer-3AT robot in real-world studies.
|abstract=Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
|confname=ICRA 2023
|confname=MobiCom'23
|link=https://ieeexplore.ieee.org/document/10161345
|link=https://arxiv.org/pdf/2308.06053
|title=Zero-shot Active Visual Search (ZAVIS): Intelligent Object Search for Robotic Assistants
|title=Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
|speaker=Zhenhua
|speaker=Jiale
|date=2024-05-24}}
|date=2024-06-14}}
{{Latest_seminar
{{Latest_seminar
|abstract=Network monitoring systems struggle with the issue that the measurement data is incomplete, with only a subset of origin-destination (OD) pairs or time slots observed, due to the high deployment and measurement cost. Recent studies show that the missing data can be inferred from partial measurements using neural network models and tensor methods. However, these recovery approaches fail to achieve accuracy, adaptability and high speed, simultaneously. In this paper, we propose RecMon, a deep learning-based data recovery system that satisfies the above three criteria. A global spatio-temporal attention mechanism and a data augmentation algorithm are proposed to improve the recovery accuracy. A semi-supervised learning-based scheme is devised for fast and effective model updates. We conduct extensive experiments on three real-world datasets to compare RecMon with four state-of-the-art methods in terms of online recovery performance. The experimental results show that RecMon can adapt to the latest state of the network and accurately recover network measurement data in less than 100 milliseconds. When 90% of the data is missing, the recovery accuracy of RecMon improves over the strongest baseline method by 22.7%, 16.0%, and 8.2% in the three datasets, respectively.
|abstract=Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.
|confname=INFOCOM 2023
|confname=SEC'23
|link=https://xplorestaging.ieee.org/document/10229025
|link=https://www.cs.hunter.cuny.edu/~sdebroy/publication-files/SEC2023_CR.pdf
|title=RecMon: A Deep Learning-based Data Recovery System for Network Monitoring
|title=On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction
|speaker=Zhenguo
|speaker=Yang Wang
|date=2024-05-24}}
|date=2024-06-14}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 15:22, 11 June 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom'23] Cost-effective On-device Continual Learning over Memory Hierarchy with Miro, Jiale
    Abstract: Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
  2. [SEC'23] On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction, Yang Wang
    Abstract: Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}