Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(72 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-09-13 10:30-12:00'''
|time='''2025-09-25 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


===Latest===
===Latest===


{{Hist_seminar
{{Latest_seminar
|abstract = Increasing bandwidth demands of mobile video streaming pose a challenge in optimizing the Quality of Experience (QoE) for better user engagement. Multipath transmission promises to extend network capacity by utilizing multiple wireless links simultaneously. Previous studies mainly tune the packet scheduler in multipath transmission, expecting higher QoE by accelerating transmission. However, since Adaptive BitRate (ABR) algorithms overlook the impact of multipath scheduling on throughput prediction, multipath adaptive streaming can even experience lower QoE than single-path. This paper proposes Chorus, a cross-layer framework that coordinates multipath scheduling with adaptive streaming to optimize QoE jointly. Chorus establishes two-way feedback control loops between the server and the client. Furthermore, Chorus introduces Coarse-grained Decisions, which assist appropriate bitrate selection by considering the scheduling decision in throughput prediction, and Finegrained Corrections, which meet the predicted throughput by QoE-oriented multipath scheduling. Extensive emulation and real-world mobile Internet evaluations show that Chorus outperforms the state-of-the-art MPQUIC scheduler, improving average QoE by 23.5% and 65.7%, respectively.  
|abstract = Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
|confname=MobiCom' 24
|confname =INFOCOM'25
|link = https://dl.acm.org/doi/pdf/10.1145/3636534.3649359
|link = https://ieeexplore.ieee.org/abstract/document/11044587
|title= Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming
|title= HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing
|speaker=Jiahao
|speaker= Yi Zhou
|date=2024-9-13
|date=2025-9-26
}}{{Latest_seminar
|abstract = Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).
|confname =NSDI'25
|link = https://www.usenix.org/conference/nsdi25/presentation/garg
|title= Large Network UWB Localization: Algorithms and Implementation
|speaker=Bangguo
|date=2025-9-26
}}
}}
{{Hist_seminar
|abstract = In Distributed Quantum Computing (DQC), quantum bits (qubits) used in a quantum circuit may be distributed on multiple Quantum Computers (QCs) connected by a Quantum Data Network (QDN). To perform a quantum gate operation involving two qubits on different QCs, we have to establish an Entanglement Connection (EC) between their host QCs. Existing EC establishment schemes result in a long EC establishment time, and low quantum resource utilization.In this paper, we propose an Asynchronous Entanglement Routing and Provisioning (AEPR) scheme to minimize the task completion time in DQC systems. AEPR has three distinct features: (i). Entanglement Paths (EPs) for a given SD pair are predetermined to eliminate the need for runtime calculation; (ii). Entanglement Links (ELs) are created proactively to reduce the time needed create EL on demand; and (iii). For a given EC request, quantum swapping along an EP is performed by a repeater whenever two adjacent ELs are created, so precious quantum resources at the repeater can be released immediately thereafter for other ELs and ECs. Extensive simulations show that AEPR can save up to 76.05% of the average task completion time in DQC systems compared with the state-of-the-art entanglement routing schemes designed to maximize QDN throughput.
|confname=INFOCOM' 23
|link = https://doi.org/10.1109/infocom53939.2023.10229101
|title= Asynchronous Entanglement Provisioning and Routing for Distributed Quantum Computing
|speaker=Yaliang
|date=2024-9-13
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 21:23, 25 September 2025

Time: 2025-09-25 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM'25] HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing, Yi Zhou
    Abstract: Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
  2. [NSDI'25] Large Network UWB Localization: Algorithms and Implementation, Bangguo
    Abstract: Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}