Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(88 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-09-13 10:30-12:00'''
|time='''2025-12-12 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}


Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Increasing bandwidth demands of mobile video streaming pose a challenge in optimizing the Quality of Experience (QoE) for better user engagement. Multipath transmission promises to extend network capacity by utilizing multiple wireless links simultaneously. Previous studies mainly tune the packet scheduler in multipath transmission, expecting higher QoE by accelerating transmission. However, since Adaptive BitRate (ABR) algorithms overlook the impact of multipath scheduling on throughput prediction, multipath adaptive streaming can even experience lower QoE than single-path. This paper proposes Chorus, a cross-layer framework that coordinates multipath scheduling with adaptive streaming to optimize QoE jointly. Chorus establishes two-way feedback control loops between the server and the client. Furthermore, Chorus introduces Coarse-grained Decisions, which assist appropriate bitrate selection by considering the scheduling decision in throughput prediction, and Finegrained Corrections, which meet the predicted throughput by QoE-oriented multipath scheduling. Extensive emulation and real-world mobile Internet evaluations show that Chorus outperforms the state-of-the-art MPQUIC scheduler, improving average QoE by 23.5% and 65.7%, respectively.  
|abstract = Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.  
|confname=MobiCom' 24
|confname =EMNLP'25
|link = https://dl.acm.org/doi/pdf/10.1145/3636534.3649359
|link = https://arxiv.org/abs/2501.18460
|title= Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming
|title= ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation
|speaker=Jiahao
|speaker=Youwei Ran
|date=2024-9-13
|date=2025-12-12
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = In Distributed Quantum Computing (DQC), quantum bits (qubits) used in a quantum circuit may be distributed on multiple Quantum Computers (QCs) connected by a Quantum Data Network (QDN). To perform a quantum gate operation involving two qubits on different QCs, we have to establish an Entanglement Connection (EC) between their host QCs. Existing EC establishment schemes result in a long EC establishment time, and low quantum resource utilization.In this paper, we propose an Asynchronous Entanglement Routing and Provisioning (AEPR) scheme to minimize the task completion time in DQC systems. AEPR has three distinct features: (i). Entanglement Paths (EPs) for a given SD pair are predetermined to eliminate the need for runtime calculation; (ii). Entanglement Links (ELs) are created proactively to reduce the time needed create EL on demand; and (iii). For a given EC request, quantum swapping along an EP is performed by a repeater whenever two adjacent ELs are created, so precious quantum resources at the repeater can be released immediately thereafter for other ELs and ECs. Extensive simulations show that AEPR can save up to 76.05% of the average task completion time in DQC systems compared with the state-of-the-art entanglement routing schemes designed to maximize QDN throughput.  
|abstract =Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.
|confname=INFOCOM' 23
|confname =CoRL'24
|link = https://doi.org/10.1109/infocom53939.2023.10229101
|link = https://openreview.net/forum?id=FO6tePGRZj
|title= Asynchronous Entanglement Provisioning and Routing for Distributed Quantum Computing
|title= Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation
|speaker=Yaliang
|speaker=Yi Zhou
|date=2024-9-13
|date=2025-12-12
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 23:32, 11 December 2025

Time: 2025-12-12 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [EMNLP'25] ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation, Youwei Ran
    Abstract: Code translation is a crucial activity in the software development and maintenance process, and researchers have recently begun to focus on using pre-trained large language models (LLMs) for code translation. However, existing LLMs only learn the contextual semantics of code during pre-training, neglecting executability information closely related to the execution state of the code, which results in unguaranteed code executability and unreliable automated code translation. To address this issue, we propose ExeCoder, an LLM specifically designed for code translation, aimed at utilizing executability representations such as functional semantics, syntax structures, and variable dependencies to enhance the capabilities of LLMs in code translation. To evaluate the effectiveness of ExeCoder, we manually enhanced the widely used benchmark TransCoder-test, resulting in a benchmark called TransCoder-test-X that serves LLMs. Evaluation of TransCoder-test-X indicates that ExeCoder achieves state-of-the-art performance in code translation, surpassing existing open-source code LLMs by over 10.88% to 38.78% and over 27.44% to 42.97% on two metrics, and even outperforms the renowned closed-source LLM GPT-4o.
  2. [CoRL'24] Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation, Yi Zhou
    Abstract: Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. We will open-source all the hardware and software implementations upon publication.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}