Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(51 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-09-29 10:30-12:00'''
|time='''2025-06-13 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Zero-shot object navigation is a challenging task for home-assistance robots. This task emphasizes visual grounding, commonsense inference and locomotion abilities, where the first two are inherent in foundation models. But for the locomotion part, most works still depend on map-based planning approaches. The gap between RGB space and map space makes it difficult to directly transfer the knowledge from foundation models to navigation tasks. In this work, we propose a Pixel-guided Navigation skill (PixNav), which bridges the gap between the foundation models and the embodied navigation task. It is straightforward for recent foundation models to indicate an object by pixels, and with pixels as the goal specification, our method becomes a versatile navigation policy towards all different kinds of objects. Besides, our PixNav is a pure RGB-based policy that can reduce the cost of homeassistance robots. Experiments demonstrate the robustness of the PixNav which achieves 80+% success rate in the local path-planning task. To perform long-horizon object navigation, we design an LLM-based planner to utilize the commonsense knowledge between objects and rooms to select the best waypoint. Evaluations across both photorealistic indoor simulators and real-world environments validate the effectiveness of our proposed navigation strategy.
|abstract = In the metaverse era, point cloud video (PCV) streaming on mobile XR devices is pivotal. While most current methods focus on PCV compression from traditional 3-DoF video services, emerging AI techniques extract vital semantic information, producing content resembling the original. However, these are early-stage and computationally intensive. To enhance the inference efficacy of AI-based approaches, accommodate dynamic environments, and facilitate applicability to metaverse XR devices, we present ISCom, an interest-aware semantic communication scheme for lightweight PCV streaming. ISCom is featured with a region-of-interest (ROI) selection module, a lightweight encoder-decoder training module, and a learning-based scheduler to achieve real-time PCV decoding and rendering on resource-constrained devices. ISCom’s dual-stage ROI selection provides significantly reduces data volume according to real-time interest. The lightweight PCV encoder-decoder training is tailored to resource-constrained devices and adapts to the heterogeneous computing capabilities of devices. Furthermore, We provide a deep reinforcement learning (DRL)-based scheduler to select optimal encoder-decoder model for various devices adaptivelly, considering the dynamic network environments and device computing capabilities. Our extensive experiments demonstrate that ISCom outperforms baselines on mobile devices, achieving a minimum rendering frame rate improvement of 10 FPS and up to 22 FPS. Furthermore, our method significantly reduces memory usage by 41.7% compared to the state-of-the-art AITransfer method. These results highlight the effectiveness of ISCom in enabling lightweight PCV streaming and its potential to improve immersive experiences for emerging metaverse application.
|confname=ICRA' 24
|confname =JSAC'24
|link = https://ieeexplore.ieee.org/document/10610499
|link = https://dl.acm.org/doi/10.1109/JSAC.2023.3345430
|title= Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill
|title= ISCom: Interest-Aware Semantic Communication Scheme for Point Cloud Video Streaming on Metaverse XR Devices
|speaker=Qinyong
|speaker=Jiyi
|date=2024-10-10
|date=2025-06-13
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Datacenter networks today provide best-effort delivery—messages may observe unpredictable queueing, delays, and drops due to switch buffer overflows within the network. Such weak guarantees reduce the set of assumptions that system designers can rely upon from the network, thus introducing inefficiency and complexity in host hardware and software. We present Harmony, a datacenter network architecture that provides powerful "congestion-free" message delivery guarantees—each message, once transmitted by the sender, observes bounded queueing at each switch in the network. Thus, network delays are bounded in failure-free scenarios, and congestion-related drops are completely eliminated. We establish, both theoretically and empirically, that Harmony provides such powerful guarantees with near-zero overheads compared to best-effort delivery networks: it incurs a tiny additive latency overhead that diminishes with message sizes, while achieving near-optimal network utilization.
|abstract = Scientific Illustration Tutorial
|confname=NSDI' 24
|confname = TUTORIAL
|link = https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
|link = https://mobinets.cn/Resource:Seminar
|title= Harmony: A Congestion-free Datacenter Architecture
|title= Idea share
|speaker=Junzhe
|speaker=OldBee
|date=2024-10-10
|date=2025-06-13
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 08:34, 16 June 2025

Time: 2025-06-13 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [JSAC'24] ISCom: Interest-Aware Semantic Communication Scheme for Point Cloud Video Streaming on Metaverse XR Devices, Jiyi
    Abstract: In the metaverse era, point cloud video (PCV) streaming on mobile XR devices is pivotal. While most current methods focus on PCV compression from traditional 3-DoF video services, emerging AI techniques extract vital semantic information, producing content resembling the original. However, these are early-stage and computationally intensive. To enhance the inference efficacy of AI-based approaches, accommodate dynamic environments, and facilitate applicability to metaverse XR devices, we present ISCom, an interest-aware semantic communication scheme for lightweight PCV streaming. ISCom is featured with a region-of-interest (ROI) selection module, a lightweight encoder-decoder training module, and a learning-based scheduler to achieve real-time PCV decoding and rendering on resource-constrained devices. ISCom’s dual-stage ROI selection provides significantly reduces data volume according to real-time interest. The lightweight PCV encoder-decoder training is tailored to resource-constrained devices and adapts to the heterogeneous computing capabilities of devices. Furthermore, We provide a deep reinforcement learning (DRL)-based scheduler to select optimal encoder-decoder model for various devices adaptivelly, considering the dynamic network environments and device computing capabilities. Our extensive experiments demonstrate that ISCom outperforms baselines on mobile devices, achieving a minimum rendering frame rate improvement of 10 FPS and up to 22 FPS. Furthermore, our method significantly reduces memory usage by 41.7% compared to the state-of-the-art AITransfer method. These results highlight the effectiveness of ISCom in enabling lightweight PCV streaming and its potential to improve immersive experiences for emerging metaverse application.
  2. [TUTORIAL] Idea share, OldBee
    Abstract: Scientific Illustration Tutorial

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}