Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(72 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-10-11 10:30-12:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Zero-shot object navigation is a challenging task for home-assistance robots. This task emphasizes visual grounding, commonsense inference and locomotion abilities, where the first two are inherent in foundation models. But for the locomotion part, most works still depend on map-based planning approaches. The gap between RGB space and map space makes it difficult to directly transfer the knowledge from foundation models to navigation tasks. In this work, we propose a Pixel-guided Navigation skill (PixNav), which bridges the gap between the foundation models and the embodied navigation task. It is straightforward for recent foundation models to indicate an object by pixels, and with pixels as the goal specification, our method becomes a versatile navigation policy towards all different kinds of objects. Besides, our PixNav is a pure RGB-based policy that can reduce the cost of homeassistance robots. Experiments demonstrate the robustness of the PixNav which achieves 80+% success rate in the local path-planning task. To perform long-horizon object navigation, we design an LLM-based planner to utilize the commonsense knowledge between objects and rooms to select the best waypoint. Evaluations across both photorealistic indoor simulators and real-world environments validate the effectiveness of our proposed navigation strategy.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=ICRA' 24
|confname =ACL'24
|link = https://ieeexplore.ieee.org/document/10610499
|link = https://arxiv.org/abs/2406.16441
|title= Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Qinyong
|speaker=Bairong Liu
|date=2024-10-10
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Datacenter networks today provide best-effort delivery—messages may observe unpredictable queueing, delays, and drops due to switch buffer overflows within the network. Such weak guarantees reduce the set of assumptions that system designers can rely upon from the network, thus introducing inefficiency and complexity in host hardware and software. We present Harmony, a datacenter network architecture that provides powerful "congestion-free" message delivery guarantees—each message, once transmitted by the sender, observes bounded queueing at each switch in the network. Thus, network delays are bounded in failure-free scenarios, and congestion-related drops are completely eliminated. We establish, both theoretically and empirically, that Harmony provides such powerful guarantees with near-zero overheads compared to best-effort delivery networks: it incurs a tiny additive latency overhead that diminishes with message sizes, while achieving near-optimal network utilization.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.compared to the best known related works.
|confname=NSDI' 24
|confname =TMC'25
|link = https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title= Harmony: A Congestion-free Datacenter Architecture
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Junzhe
|speaker=Mengyu
|date=2024-10-10
|date=2025-12-05
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}