Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(55 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-10-11 10:30-12:00'''
|time='''2025-09-19 10:30'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = LoRa is a promising technology that offers ubiquitous low-power IoT connectivity. With the features of multi-channel communication, orthogonal transmission, and spectrum sharing, LoRaWAN is poised to connect millions of IoT devices across thousands of logical channels. However, current LoRa gateways utilize hardwired Rx chains that cover only a small fraction (<1%) of the logical channels, limiting the potential for massive LoRa communications. This paper presents XGate, a novel gateway design that uses a single Rx chain to concurrently receive packets from all logical channels, fundamentally enabling scalable LoRa transmission and flexible network access. Unlike hardwired Rx chains in the current gateway design, XGate allocates resources including software-controlled Rx chains and demodulators based on the extracted meta information of incoming packets. XGate addresses a series of challenges to efficiently detect incoming packets without prior knowledge of their parameter configurations. Evaluations show that XGate boosts LoRa concurrent transmissions by 8.4× than state-of-the-art.
|abstract = With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.
|confname=Mobicom' 24
|confname =NSDI'25
|link = https://dl.acm.org/doi/pdf/10.1145/3636534.3649375
|link = https://www.usenix.org/conference/nsdi25/presentation/li-yang
|title= Revolutionizing LoRa Gateway with XGate: Scalable Concurrent Transmission across Massive Logical Channels
|title= Dissecting and Streamlining the Interactive Loop of Mobile Cloud Gaming
|speaker=Chenkai
|speaker= Li Chen
|date=2024-10-18
|date=2025-9-9
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Deep learning training (DLT), e.g., large language model (LLM) training, has become one of the most important services in multitenant cloud computing. By deeply studying in-production DLT jobs, we observed that communication contention among different DLT jobs seriously influences the overall GPU computation utilization, resulting in the low efficiency of the training cluster. In this paper, we present Crux, a communication scheduler that aims to maximize GPU computation utilization by mitigating the communication contention among DLT jobs. Maximizing GPU computation utilization for DLT, nevertheless, is NP-Complete; thus, we formulate and prove a novel theorem to approach this goal by GPU intensity-aware communication scheduling. Then, we propose an approach that prioritizes the DLT flows with high GPU computation intensity, reducing potential communication contention. Our 96-GPU testbed experiments show that Crux improves 8.3% to 14.8% GPU computation utilization. The large-scale production trace-based simulation further shows that Crux increases GPU computation utilization by up to 23% compared with alternatives including Sincronia, TACCL, and CASSINI.
|abstract = The local deployment of large language models (LLMs) on mobile devices has garnered increasing attention due to its advantages in enhancing user privacy and enabling offline operation. However, given the limited computational resources of a single mobile device, only small language models (SLMs) with restricted capabilities can currently be supported. In this paper, we explore the potential of leveraging the collective computing power of multiple mobile devices to collaboratively support more efficient local LLM inference. We evaluate the feasibility and efficiency of existing parallelism techniques under the constraints of mobile devices and wireless network, identifying that chunked pipeline parallelism holds promise for realizing this vision. Building on this insight, we propose FlexSpark, a novel solution designed to achieve efficient and robust multi-device collaborative inference. FlexSpark incorporates priority scheduling, ordered communication, and elastic compression to maximize wireless bandwidth utilization, and thus accelerates distributed inference. Preliminary experimental results demonstrate that FlexSpark achieves up to a 2 × speedup compared to state-of-the-art frameworks, significantly enhancing the practicality and scalability of LLM deployment on mobile devices.
|confname=SIGCOMM' 24
|confname =APNet'25
|link = https://dl.acm.org/doi/pdf/10.1145/3651890.3672239
|link = https://dl.acm.org/doi/10.1145/3735358.3735368
|title= Crux: GPU-Efficient Communication Scheduling for Deep Learning Training
|title= FlexSpark: Robust and Efficient Multi-Device Collaborative Inference over Wireless Network
|speaker=Youwei
|speaker=Ruizhen
|date=2024-10-18
|date=2025-9-19
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 18:03, 18 September 2025

Time: 2025-09-19 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [NSDI'25] Dissecting and Streamlining the Interactive Loop of Mobile Cloud Gaming, Li Chen
    Abstract: With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.
  2. [APNet'25] FlexSpark: Robust and Efficient Multi-Device Collaborative Inference over Wireless Network, Ruizhen
    Abstract: The local deployment of large language models (LLMs) on mobile devices has garnered increasing attention due to its advantages in enhancing user privacy and enabling offline operation. However, given the limited computational resources of a single mobile device, only small language models (SLMs) with restricted capabilities can currently be supported. In this paper, we explore the potential of leveraging the collective computing power of multiple mobile devices to collaboratively support more efficient local LLM inference. We evaluate the feasibility and efficiency of existing parallelism techniques under the constraints of mobile devices and wireless network, identifying that chunked pipeline parallelism holds promise for realizing this vision. Building on this insight, we propose FlexSpark, a novel solution designed to achieve efficient and robust multi-device collaborative inference. FlexSpark incorporates priority scheduling, ordered communication, and elastic compression to maximize wireless bandwidth utilization, and thus accelerates distributed inference. Preliminary experimental results demonstrate that FlexSpark achieves up to a 2 × speedup compared to state-of-the-art frameworks, significantly enhancing the practicality and scalability of LLM deployment on mobile devices.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}