Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(56 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-10-18 10:30-12:00'''
|time='''2025-09-25 10:30'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = LoRa is a promising technology that offers ubiquitous low-power IoT connectivity. With the features of multi-channel communication, orthogonal transmission, and spectrum sharing, LoRaWAN is poised to connect millions of IoT devices across thousands of logical channels. However, current LoRa gateways utilize hardwired Rx chains that cover only a small fraction (<1%) of the logical channels, limiting the potential for massive LoRa communications. This paper presents XGate, a novel gateway design that uses a single Rx chain to concurrently receive packets from all logical channels, fundamentally enabling scalable LoRa transmission and flexible network access. Unlike hardwired Rx chains in the current gateway design, XGate allocates resources including software-controlled Rx chains and demodulators based on the extracted meta information of incoming packets. XGate addresses a series of challenges to efficiently detect incoming packets without prior knowledge of their parameter configurations. Evaluations show that XGate boosts LoRa concurrent transmissions by 8.4× than state-of-the-art.
|abstract = Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
|confname=Mobicom' 24
|confname =INFOCOM'25
|link = https://dl.acm.org/doi/pdf/10.1145/3636534.3649375
|link = https://ieeexplore.ieee.org/abstract/document/11044587
|title= Revolutionizing LoRa Gateway with XGate: Scalable Concurrent Transmission across Massive Logical Channels
|title= HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing
|speaker=Chenkai
|speaker= Yi Zhou
|date=2024-10-18
|date=2025-9-26
}}{{Latest_seminar
|abstract = Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).
|confname =NSDI'25
|link = https://www.usenix.org/conference/nsdi25/presentation/garg
|title= Large Network UWB Localization: Algorithms and Implementation
|speaker=Bangguo
|date=2025-9-26
}}
}}
{{Latest_seminar
|abstract = Deep learning training (DLT), e.g., large language model (LLM) training, has become one of the most important services in multitenant cloud computing. By deeply studying in-production DLT jobs, we observed that communication contention among different DLT jobs seriously influences the overall GPU computation utilization, resulting in the low efficiency of the training cluster. In this paper, we present Crux, a communication scheduler that aims to maximize GPU computation utilization by mitigating the communication contention among DLT jobs. Maximizing GPU computation utilization for DLT, nevertheless, is NP-Complete; thus, we formulate and prove a novel theorem to approach this goal by GPU intensity-aware communication scheduling. Then, we propose an approach that prioritizes the DLT flows with high GPU computation intensity, reducing potential communication contention. Our 96-GPU testbed experiments show that Crux improves 8.3% to 14.8% GPU computation utilization. The large-scale production trace-based simulation further shows that Crux increases GPU computation utilization by up to 23% compared with alternatives including Sincronia, TACCL, and CASSINI.
|confname=SIGCOMM' 24
|link = https://dl.acm.org/doi/pdf/10.1145/3651890.3672239
|title= Crux: GPU-Efficient Communication Scheduling for Deep Learning Training
|speaker=Youwei
|date=2024-10-18
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 21:23, 25 September 2025

Time: 2025-09-25 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM'25] HyperJet: Joint Communication and Computation Scheduling for Hypergraph Tasks in Distributed Edge Computing, Yi Zhou
    Abstract: Distributed Edge Computing (DEC) has emerged as a novel paradigm, owing to its superior performance in communication latency, parallel computing efficiency, and energy consumption. With the surge of tasks in generative artificial intelligence, DEC faces higher demands for parallel computing efficiency. Scheduling multiple tasks for simultaneous processing, rather than one-by-one handling, could enhance parallel efficiency. Multiple tasks have multi-dependencies, i.e., sequence dependency, attribute similarity, and attribute correlation. Utilizing the bidirectional edges of traditional graphs to represent multi-dependencies can lead to an explosion in quantity. A hypergraph, with its hyperedges capable of connecting any number of vertices, can significantly solve the above problem. However, the multi-dependencies are rarely studied in the current research, posing the challenges, including incapable representing and unable capturing of multi-dependency hypergraph. In this work, we introduce a Joint communication and computation scheduling for hypErgraph Tasks in DEC, namely HypeJet, To effectively represent multi-dependencies, we employ hypergraph construction to represent task attributes and utilize hypergraph partitioning to clarify and refine task attribute correlations, enhancing parallel efficiency. In response to the challenge of capturing multi-dependencies, we employ a scheduling mechanism with the hypergraph neural network that efficiently acquires higher-order attribute correlated information among convolution matrices, providing enriched contextual information on multi-dependencies that supports decision-making in scheduling tasks. The evaluations using real-world traces demonstrate an 18.07% improvement in parallel efficiency of task scheduling.
  2. [NSDI'25] Large Network UWB Localization: Algorithms and Implementation, Bangguo
    Abstract: Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4× and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors).

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}