Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(70 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-10-18 10:30-12:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = LoRa is a promising technology that offers ubiquitous low-power IoT connectivity. With the features of multi-channel communication, orthogonal transmission, and spectrum sharing, LoRaWAN is poised to connect millions of IoT devices across thousands of logical channels. However, current LoRa gateways utilize hardwired Rx chains that cover only a small fraction (<1%) of the logical channels, limiting the potential for massive LoRa communications. This paper presents XGate, a novel gateway design that uses a single Rx chain to concurrently receive packets from all logical channels, fundamentally enabling scalable LoRa transmission and flexible network access. Unlike hardwired Rx chains in the current gateway design, XGate allocates resources including software-controlled Rx chains and demodulators based on the extracted meta information of incoming packets. XGate addresses a series of challenges to efficiently detect incoming packets without prior knowledge of their parameter configurations. Evaluations show that XGate boosts LoRa concurrent transmissions by 8.4× than state-of-the-art.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname=Mobicom' 24
|confname =ACL'24
|link = https://dl.acm.org/doi/pdf/10.1145/3636534.3649375
|link = https://arxiv.org/abs/2406.16441
|title= Revolutionizing LoRa Gateway with XGate: Scalable Concurrent Transmission across Massive Logical Channels
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker=Chenkai
|speaker=Bairong Liu
|date=2024-10-18
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Deep learning training (DLT), e.g., large language model (LLM) training, has become one of the most important services in multitenant cloud computing. By deeply studying in-production DLT jobs, we observed that communication contention among different DLT jobs seriously influences the overall GPU computation utilization, resulting in the low efficiency of the training cluster. In this paper, we present Crux, a communication scheduler that aims to maximize GPU computation utilization by mitigating the communication contention among DLT jobs. Maximizing GPU computation utilization for DLT, nevertheless, is NP-Complete; thus, we formulate and prove a novel theorem to approach this goal by GPU intensity-aware communication scheduling. Then, we propose an approach that prioritizes the DLT flows with high GPU computation intensity, reducing potential communication contention. Our 96-GPU testbed experiments show that Crux improves 8.3% to 14.8% GPU computation utilization. The large-scale production trace-based simulation further shows that Crux increases GPU computation utilization by up to 23% compared with alternatives including Sincronia, TACCL, and CASSINI.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname=SIGCOMM' 24
|confname =TMC'25
|link = https://dl.acm.org/doi/pdf/10.1145/3651890.3672239
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title= Crux: GPU-Efficient Communication Scheduling for Deep Learning Training
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Youwei
|speaker=Mengyu
|date=2024-10-18
|date=2025-12-05
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}