Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-11-1 10:30-12:00'''
|time='''2024-12-06 10:30-12:00'''
|addr=4th Research Building A533
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
}}
}}
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we revisit the problem of the current routing system in terms of prediction scalability and routing result optimality. Specifically, the current traffic prediction models are not suitable for large urban networks due to the incomplete information of traffic conditions. Besides, existing routing systems can only plan the routes based on the past traffic conditions and struggle to update the optimal route for vehicles in real-time. As a result, the actual route taken by vehicles is different from the ground-truth optimal path. Therefore, we propose a Just-In-Time Predictive Route Planning framework to tackle these two problems. Firstly, we propose a Travel Time Constrained Top- kn Shortest Path algorithm which pre-computes a set of candidate paths with several switch points. This empowers vehicles to continuously have the opportunity to switch to better paths taking into account real-time traffic condition changes. Moreover, we present a query-driven prediction paradigm with ellipse-based searching space estimation, along with an efficient multi-queries handling mechanism. This not only allows for targeted traffic prediction by prioritizing regions with valuable yet outdated traffic information, but also provides optimal results for multiple queries based on real-time traffic evolution. Evaluations on two real-life road networks demonstrate the effectiveness and efficiency of our framework and methods.
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|confname =ICDE‘24
|confname =SIGCOMM'24
|link = https://ieeexplore.ieee.org/document/10598147/authors#authors
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|title= A Just-In-Time Framework for Continuous Routing
|title= In-Network Address Caching for Virtual Networks
|speaker=Zhenguo
|speaker=Dongting
|date=2024-11-8
|date=2024-12-06
}}
}}{{Latest_seminar
{{Latest_seminar
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|abstract = Many networking tasks now employ deep learning (DL) to solve complex prediction and optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments.
|confname = IDEA
Motivated by the recent success of large language models (LLMs), this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the powerful pre-trained knowledge, the LLM is promising to serve as the foundation model to achieve "one model for all tasks" with even better performance and stronger generalization. In pursuit of this vision, we present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems. Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers. Besides, NetLLM drastically reduces the costs of fine-tuning the LLM to acquire domain knowledge for networking. Across three networking-related use cases - viewport prediction, adaptive bitrate streaming and cluster job scheduling, we showcase that the NetLLM-adapted LLM significantly outperforms state-of-the-art algorithms.
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|confname =NSDI‘24
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672268
|speaker=Mengyu
|title= NetLLM: Adapting Large Language Models for Networking
|date=2024-12-06
|speaker=Yinghao
|date=2024-11-8
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 11:28, 6 December 2024

Time: 2024-12-06 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [SIGCOMM'24] In-Network Address Caching for Virtual Networks, Dongting
    Abstract: Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
  2. [IDEA] ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation, Mengyu
    Abstract: Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}