Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(34 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-11-29 10:30-12:00'''
|time='''2025-09-19 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = On-device Deep Neural Network (DNN) training has been recognized as crucial for privacy-preserving machine learning at the edge. However, the intensive training workload and limited onboard computing resources pose significant challenges to the availability and efficiency of model training. While existing works address these challenges through native resource management optimization, we instead leverage our observation that edge environments usually comprise a rich set of accompanying trusted edge devices with idle resources beyond a single terminal. We propose Asteroid, a distributed edge training system that breaks the resource walls across heterogeneous edge devices for efficient model training acceleration. Asteroid adopts a hybrid pipeline parallelism to orchestrate distributed training, along with a judicious parallelism planning for maximizing throughput under certain resource constraints. Furthermore, a fault-tolerant yet lightweight pipeline replay mechanism is developed to tame the device-level dynamics for training robustness and performance stability. We implement Asteroid on heterogeneous edge devices with both vision and language models, demonstrating up to 12.2× faster training than conventional parallelism methods and 2.1× faster than state-of-the-art hybrid parallelism methods through evaluations. Furthermore, Asteroid can recover training pipeline 14× faster than baseline methods while preserving comparable throughput despite unexpected device exiting and failure.
|abstract = With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.
|confname = MobiCom'24
|confname =NSDI'25
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3649363
|link = https://www.usenix.org/conference/nsdi25/presentation/li-yang
|title= Asteroid: Resource-Efficient Hybrid Pipeline Parallelism for Collaborative DNN Training on Heterogeneous Edge Devices
|title= Dissecting and Streamlining the Interactive Loop of Mobile Cloud Gaming
|speaker=Congrong
|speaker= Li Chen
|date=2024-11-29
|date=2025-9-9
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = The need for cooperation among intelligent edge devices has popularized cooperative multi-agent reinforcement learning (MARL) in multi-target coverage. However, many research efforts rely heavily on parameter sharing among homogeneous agents, which hampers coverage performance. The heterogeneity of computing and sensing capabilities, along with the time-varying dynamics of computing resources, pose significant challenges. To address these challenges, we propose a resource-sensitive multi-agent reinforcement learning framework based on heterogeneous edge devices (SmartHE). SmartHE decomposes the target coverage task into two hierarchical levels: 1) Executor-level task: A central coordinator assigns a subset of executors (i.e., cameras or agents) to execute action policies, aiming to minimize overall policy inference time and energy consumption by leveraging resource heterogeneity. 2) Target-level task: Each executor ignores irrelevant targets that fall outside the coverage radius of the executor based on the estimated target states and ignores redundant targets that could be more effectively covered by other executors based on the utility estimation. This enables each executor to focus on extracting features that optimize coverage. Through this dual-task framework, SmartHE efficiently improves the system performance.
|abstract = The local deployment of large language models (LLMs) on mobile devices has garnered increasing attention due to its advantages in enhancing user privacy and enabling offline operation. However, given the limited computational resources of a single mobile device, only small language models (SLMs) with restricted capabilities can currently be supported. In this paper, we explore the potential of leveraging the collective computing power of multiple mobile devices to collaboratively support more efficient local LLM inference. We evaluate the feasibility and efficiency of existing parallelism techniques under the constraints of mobile devices and wireless network, identifying that chunked pipeline parallelism holds promise for realizing this vision. Building on this insight, we propose FlexSpark, a novel solution designed to achieve efficient and robust multi-device collaborative inference. FlexSpark incorporates priority scheduling, ordered communication, and elastic compression to maximize wireless bandwidth utilization, and thus accelerates distributed inference. Preliminary experimental results demonstrate that FlexSpark achieves up to a 2 × speedup compared to state-of-the-art frameworks, significantly enhancing the practicality and scalability of LLM deployment on mobile devices.
|confname = IDEA
|confname =APNet'25
|link =
|link = https://dl.acm.org/doi/10.1145/3735358.3735368
|title= SmartHE: Resource-sensitive MARL framework based on heterogeneous edge devices
|title= FlexSpark: Robust and Efficient Multi-Device Collaborative Inference over Wireless Network
|speaker=Xianyang
|speaker=Ruizhen
|date=2024-11-29
|date=2025-9-19
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 18:03, 18 September 2025

Time: 2025-09-19 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [NSDI'25] Dissecting and Streamlining the Interactive Loop of Mobile Cloud Gaming, Li Chen
    Abstract: With cloud-side computing and rendering, mobile cloud gaming (MCG) is expected to deliver high-quality gaming experiences to budget mobile devices. However, our measurement on representative MCG platforms reveals that even under good network conditions, all platforms exhibit high interactive latency of 112–403 ms, from a user-input action to its display response, that critically affects users’ quality of experience. Moreover, jitters in network latency often lead to significant fluctuations in interactive latency. In this work, we collaborate with a commercial MCG platform to conduct the first in-depth analysis on the interactive latency of cloud gaming. We identify VSync, the synchronization primitive of Android graphics pipeline, to be a key contributor to the excessive interactive latency; as many as five VSync events are intricately invoked, which serialize the complex graphics processing logic on both the client and cloud sides. To address this, we design an end-to-end VSync regulator, dubbed LoopTailor, which minimizes VSync events by decoupling game rendering from the lengthy cloud-side graphics pipeline and coordinating cloud game rendering directly with the client. We implement LoopTailor on the collaborated platform and commodity Android devices, reducing the interactive latency (by ∼34%) to stably below 100 ms.
  2. [APNet'25] FlexSpark: Robust and Efficient Multi-Device Collaborative Inference over Wireless Network, Ruizhen
    Abstract: The local deployment of large language models (LLMs) on mobile devices has garnered increasing attention due to its advantages in enhancing user privacy and enabling offline operation. However, given the limited computational resources of a single mobile device, only small language models (SLMs) with restricted capabilities can currently be supported. In this paper, we explore the potential of leveraging the collective computing power of multiple mobile devices to collaboratively support more efficient local LLM inference. We evaluate the feasibility and efficiency of existing parallelism techniques under the constraints of mobile devices and wireless network, identifying that chunked pipeline parallelism holds promise for realizing this vision. Building on this insight, we propose FlexSpark, a novel solution designed to achieve efficient and robust multi-device collaborative inference. FlexSpark incorporates priority scheduling, ordered communication, and elastic compression to maximize wireless bandwidth utilization, and thus accelerates distributed inference. Preliminary experimental results demonstrate that FlexSpark achieves up to a 2 × speedup compared to state-of-the-art frameworks, significantly enhancing the practicality and scalability of LLM deployment on mobile devices.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}