Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-01-10 10:30-12:00'''
|time='''2025-03-14 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Recently, smart roadside infrastructure (SRI) has demonstrated the potential of achieving fully autonomous driving systems. To explore the potential of infrastructure-assisted autonomous driving, this paper presents the design and deployment of Soar, the first end-to-end SRI system specifically designed to support autonomous driving systems. Soar consists of both software and hardware components carefully designed to overcome various system and physical challenges. Soar can leverage the existing operational infrastructure like street lampposts for a lower barrier of adoption. Soar adopts a new communication architecture that comprises a bi-directional multi-hop I2I network and a downlink I2V broadcast service, which are designed based on off-the-shelf 802.11ac interfaces in an integrated manner. Soar also features a hierarchical DL task management framework to achieve desirable load balancing among nodes and enable them to collaborate efficiently to run multiple data-intensive autonomous driving applications. We deployed a total of 18 Soar nodes on existing lampposts on campus, which have been operational for over two years. Our real-world evaluation shows that Soar can support a diverse set of autonomous driving applications and achieve desirable real-time performance and high communication reliability. Our findings and experiences in this work offer key insights into the development and deployment of next-generation smart roadside infrastructure and autonomous driving systems.
|abstract = Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models will be fully open-sourced.
|confname =MobiCom'24
|confname = Arxiv
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3649352
|link = https://arxiv.org/abs/2502.02508
|title= Soar: Design and Deployment of A Smart Roadside Infrastructure System for Autonomous Driving
|title= Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
|speaker=Jiahao
|speaker=Qinyong
|date=2025-01-10
|date=2025-03-14
}}{{Latest_seminar
}}{{Latest_seminar
|abstract = GPUs are increasingly utilized for running DNN tasks on emerging mobile edge devices. Beyond accelerating single task inference, their value is also particularly apparent in efficiently executing multiple DNN tasks, which often have strict latency requirements in applications. Preemption is the main technology to ensure multitasking timeliness, but mobile edges primarily offer two priorities for task queues, and existing methods thus achieve only coarse-grained preemption by categorizing DNNs into real-time and best-effort, permitting a real-time task to preempt best-effort ones. However, the efficacy diminishes significantly when other real-time tasks run concurrently, but this is already common in mobile edge applications. Due to different hardware characteristics, solutions from other platforms are unsuitable. For instance, GPUs on traditional mobile devices primarily assist CPU processing and lack special preemption support, mainly following FIFO in GPU scheduling. Clouds handle concurrent task execution, but focus on allocating one or more GPUs per complex model, whereas on mobile edges, DNNs mainly vie for one GPU. This paper introduces Pantheon, designed to offer fine-grained preemption, enabling real-time tasks to preempt each other and best-effort tasks. Our key observation is that the two-tier GPU stream priorities, while underexplored, are sufficient. Efficient preemption can be realized through software design by innovative scheduling and novel exploitation of the nested redundancy principle for DNN models. Evaluation on a diverse set of DNNs shows substantial improvements in deadline miss rate and accuracy of Pantheon over state-of-the-art methods.
|abstract = Light bulbs have been recently explored to design Light Fidelity (LiFi) communication to battery-free tags, thus complementing Radiofrequency (RF) backscatter in the uplink. In this paper, we show that LiFi and RF backscatter are complementary and have unexplored interactions. We introduce PassiveLiFi, a battery-free system that uses LiFi to transmit RF backscatter at a meagre power budget. We address several challenges on the system design in the LiFi transmitter, the tag and the RF receiver. We design the first LiFi transmitter that implements a chirp spread spectrum (CSS) using the visible light spectrum. We use a small bank of solar cells for both communication and harvesting, and reconfigure them based on the amount of harvested energy and desired data rate. We further alleviate the low responsiveness of solar cells with a new low-power receiver design in the tag. We design and implement a novel technique for embedding multiple symbols in the RF backscatter based on delayed chirps. Experimental results with an RF carrier of 17dBm show that we can generate RF backscatter with a range of 92.1 meters/ μW consumed in the tag, which is almost double with respect to prior work.
|confname =MobiSys'24
|confname =ToN'23
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661878
|link = https://ieeexplore.ieee.org/document/10371205/
|title= Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs
|title= LiFi for Low-Power and Long-Range RF Backscatter
|speaker=Jiele
|speaker=Mengyu
|date=2025-01-10
|date=2025-03-14
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:59, 14 March 2025

Time: 2025-03-14 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Arxiv] Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search, Qinyong
    Abstract: Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models will be fully open-sourced.
  2. [ToN'23] LiFi for Low-Power and Long-Range RF Backscatter, Mengyu
    Abstract: Light bulbs have been recently explored to design Light Fidelity (LiFi) communication to battery-free tags, thus complementing Radiofrequency (RF) backscatter in the uplink. In this paper, we show that LiFi and RF backscatter are complementary and have unexplored interactions. We introduce PassiveLiFi, a battery-free system that uses LiFi to transmit RF backscatter at a meagre power budget. We address several challenges on the system design in the LiFi transmitter, the tag and the RF receiver. We design the first LiFi transmitter that implements a chirp spread spectrum (CSS) using the visible light spectrum. We use a small bank of solar cells for both communication and harvesting, and reconfigure them based on the amount of harvested energy and desired data rate. We further alleviate the low responsiveness of solar cells with a new low-power receiver design in the tag. We design and implement a novel technique for embedding multiple symbols in the RF backscatter based on delayed chirps. Experimental results with an RF carrier of 17dBm show that we can generate RF backscatter with a range of 92.1 meters/ μW consumed in the tag, which is almost double with respect to prior work.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}