Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-03-28 10:30-12:00'''
|time='''2025-04-11 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing their private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt multiple plaintexts into a single ciphertext. However, the original design of PHE does not consider the heterogeneity among different clients, an intrinsic problem in cross-silo FL, often resulting in undermined training efficiency with slow convergence and stragglers. In this work, we propose FedPHE, an efficiently packed homomorphically encrypted FL framework with secure weighted aggregation and client selection to tackle the heterogeneity problem. Specifically, using CKKS with sparsification, FedPHE can achieve efficient encrypted weighted aggregation by accounting for contributions of local updates to the global model. To mitigate the straggler effect, we devise a sketching-based client selection scheme to cherry-pick representative clients with heterogeneous models and computing capabilities. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy, achieve a training speedup of 1.85 − 4.44×, cut the communication overhead by 1.24 − 22.62× , and reduce the straggler effect by up to 1.71 − 2.39×.
|abstract = While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
|confname =INFOCOM24'
|confname = Mobisys'24
|link = https://ieeexplore.ieee.org/abstract/document/10621440
|link = https://dl.acm.org/doi/abs/10.1145/3643832.3661888
|title= Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning
|title= CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
|speaker=Dongting
|speaker= Zhenhua
|date=2025-03-28
|date=2025-04-18
}}{{Latest_seminar
}}
|abstract = Entanglement routing (ER) in quantum networks must guarantee entanglement fidelity, a property that is crucial for applications such as quantum key distribution, quantum computation, and quantum sensing. Conventional ER approaches assume that network links can only generate entanglements with a fixed fidelity, and then they rely on purification to improve endto-end fidelities. However, recent advances in entanglement generation technologies show that quantum links can be configured by choosing among different fidelity/entanglement-rate combinations (defined in this paper as link configurations), hence enabling a more flexible assignment of quantum-network resources for meeting specific application requirements. To exploit this opportunity, we introduce the problem of link configuration for fidelityconstrained routing and purification (LC-FCRP) in Quantum Networks. We first formulate a simplified FCRP version as a Mixed Integer Linear Programming (MILP) model, where the link fidelity can be adjusted within a finite set. Then, to explore the full space of possible link configurations, we propose a link configuration algorithm based on a novel shortest-pathbased fidelity determination (SPFD) algorithm w/o Bayesian Optimization, which can be applied on top of any existing ER algorithm. Numerical results demonstrate that link configuration improves the acceptance ratio of existing ER algorithms by 87%.
{{Latest_seminar
|confname =INFOCOM25'
|abstract = Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.
|link = https://re.public.polimi.it/bitstream/11311/1281986/1/final_infocom25_link_configuration_for_entanglement_routing.pdf
|confname = TC'24
|title= Link Configuration for Fidelity-Constrained Entanglement Routing in Quantum Networks
|link = https://ieeexplore.ieee.org/document/10360355
|speaker=Yaliang
|title= A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos
|date=2025-03-27
|speaker=Mengfan
|date=2025-04-18
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:54, 18 April 2025

Time: 2025-04-11 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference, Zhenhua
    Abstract: While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
  2. [TC'24] A GPU-Enabled Real-Time Framework for Compressing and Rendering Volumetric Videos, Mengfan
    Abstract: Nowadays, volumetric videos have emerged as an attractive multimedia application providing highly immersive watching experiences since viewers could adjust their viewports at 6 degrees-of-freedom. However, the point cloud frames composing the video are prohibitively large, and effective compression techniques should be developed. There are two classes of compression methods. One suggests exploiting the conventional video codecs (2D-based methods) and the other proposes to compress the points in 3D space directly (3D-based methods). Though the 3D-based methods feature fast coding speeds, their compression ratios are low since the failure of leveraging inter-frame redundancy. To resolve this problem, we design a patch-wise compression framework working in the 3D space. Specifically, we search rigid moves of patches via the iterative closest point algorithm and construct a common geometric structure, which is followed by color compensation. We implement our decoder on a GPU platform so that real-time decoding and rendering are realized. We compare our method with GROOT, the state-of-the-art 3D-based compression method, and it reduces the bitrate by up to 5.98×. Moreover, by trimming invisible content, our scheme achieves comparable bandwidth demand of V-PCC, the representative 2D-based method, in FoV-adaptive streaming.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}