Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2025-04-11 10:30-12:00'''
|time='''2025-12-05 10:30'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Unlike traditional data collection applications (e.g., environment monitoring) that are dominated by uplink transmissions, the newly emerging applications (e.g., device actuation, firmware update, packet reception acknowledgement) also pose ever-increasing demands on downlink transmission capabilities. However, current LoRaWAN falls short in supporting such applications primarily due to downlink-uplink asymmetry. While the uplink can concurrently receive multiple packets, downlink transmission is limited to a single logical channel at a time, which fundamentally hinders the deployment of downlink-hungry applications. To tackle this practical challenge, FDLoRa develops the first-of-its-kind in-band full-duplex LoRa gateway design with novel solutions to mitigate the impact of self-interference (i.e., strong downlink interference to ultra-weak uplink reception), which unleashes the full spectrum for in-band downlink transmissions without compromising the reception of weak uplink packets. Built upon the full-duplex gateways, FDLoRa introduces a new downlink framework to support concurrent downlink transmissions over multiple logical channels of available gateways. Evaluation results demonstrate that FDLoRa boosts downlink capacity by 5.7x compared to LoRaWAN on a three-gateway testbed and achieves 2.58x higher downlink concurrency per gateway than the state-of-the-art.
|abstract = Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
|confname = SenSys'24
|confname =ACL'24
|link = https://dl.acm.org/doi/10.1145/3666025.3699338
|link = https://arxiv.org/abs/2406.16441
|title= FDLoRa: Tackling Downlink-Uplink Asymmetry with Full-duplex LoRa Gateways
|title= UniCoder: Scaling Code Large Language Model via Universal Code
|speaker= Chenkai
|speaker=Bairong Liu
|date=2025-05-23
|date=2025-12-05
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Deploying deep convolutional neural networks (CNNs) for edge-based video analytics poses significant challenges due to the intensive computing demands. Model partitioning has emerged as a promising solution by offloading segments of CNNs to multiple proximal edge devices for collaborative inference. However, this approach often incurs substantial cross-device transmission overhead, particularly in handling intermediate feature maps. To address these limitations, we propose ReDream (REsidual feature-DRivEn mixed spArse coding for Model partitioning), a novel edge-centric video analytics framework that jointly optimizes  transmission efficiency and inference accuracy. ReDream introduces two key innovations: 1) It enhances the sparsity of intermediate features by replacing activation functions with ReLU in selected CNN layers and retraining, thereby increasing the proportion of zero-valued elements. 2) It leverages the heterogeneous distribution of feature data across layers by applying a mixed sparse coding scheme, i.e., selecting different compression methods adaptively to optimize model partitioning. These optimizations enable ReDream to support more efficient cross-device inference while maintaining high model accuracy, making it well-suited for real-time deployment in collaborative edge environments.
|abstract =LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.
|confname = IDEA
|confname =TMC'25
|link = https://mobinets.cn/site/Resource:Seminar
|link = https://ieeexplore.ieee.org/abstract/document/11160677
|title= ReDream: Residual Feature-Driven Mixed Sparse Coding for Model Partitioning
|title= Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments
|speaker=Xianyang
|speaker=Mengyu
|date=2025-05-23
|date=2025-12-05
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 09:25, 5 December 2025

Time: 2025-12-05 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [ACL'24] UniCoder: Scaling Code Large Language Model via Universal Code, Bairong Liu
    Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
  2. [TMC'25] Resolving Inter-Logical Channel Interference for Large-scale LoRa Deployments, Mengyu
    Abstract: LoRaWANs are envisioned to connect billions of IoT devices through thousands of physically overlapping yet logically orthogonal channels (termed logical channels). These logical channels hold significant potential for enabling highly concurrent scalable IoT connectivity. Large-scale deployments however face strong interference between logical channels. This practical issue has been largely overlooked by existing works but becomes increasingly prominent as LoRaWAN scales up. To address this issue, we introduce Canas, an innovative gateway design that is poised to orthogonalize the logical channels by eliminating mutual interference. To this end, Canas develops a series of novel solutions to accurately extract the meta-information of individual ultra-weak LoRa signals from the received overlapping channels. The meta-information is then leveraged to accurately reconstruct and subtract the LoRa signals over thousands of logical channels iteratively. Real-world evaluations demonstrate that Canas can enhance concurrent transmissions across overlapping logical channels by 2.3× compared to the best known related works.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}