Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
m (wenliang updates seminars)
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Long Range Wide Area Network (LoRaWAN), using the linear chirp for data modulation, is known for its low-power and long-distance communication to connect massive Internetof-Things devices at a low cost. However, LoRaWAN throughput is far behind the demand for the dense and large-scale IoT deployments, due to the frequent collisions with the by-default random channel access (i.e., ALOHA). Recently, some works enable an effective LoRa carrier-sense for collision avoidance. However, the continuous back-off makes the network throughput easily saturated and degrades the energy efficiency at LoRa end nodes. In this paper, we propose CurveALOHA, a brandnew media access control scheme to enhance the throughput of random channel access by embracing non-linear chirps enabled
|abstract = Long Range Wide Area Network (LoRaWAN), using the linear chirp for data modulation, is known for its low-power and long-distance communication to connect massive Internetof-Things devices at a low cost. However, LoRaWAN throughput is far behind the demand for the dense and large-scale IoT deployments, due to the frequent collisions with the by-default random channel access (i.e., ALOHA). Recently, some works enable an effective LoRa carrier-sense for collision avoidance. However, the continuous back-off makes the network throughput easily saturated and degrades the energy efficiency at LoRa end nodes. In this paper, we propose CurveALOHA, a brandnew media access control scheme to enhance the throughput of random channel access by embracing non-linear chirps enabled quasi-orthogonal logical channels. First, we empirically show that non-linear chirps can achieve similar noise tolerance ability as the linear one does. Then, we observe that multiple nonlinear chirps can create new logical channels which are quasiorthogonal with the linear one and each other. Finally, given a set of non-linear chirps, we design two random chirp selection methods to guarantee an end node can access a channel with less collision probability. We implement CurveALOHA with the software-defined radios and conduct extensive experiments in both indoor and outdoor environments. The results show that CurveALOHA’s network throughput is 59.6% higher than the state-of-the-art carrier-sense MAC.  
quasi-orthogonal logical channels. First, we empirically show that non-linear chirps can achieve similar noise tolerance ability as the linear one does. Then, we observe that multiple nonlinear chirps can create new logical channels which are quasiorthogonal with the linear one and each other. Finally, given a set of non-linear chirps, we design two random chirp selection methods to guarantee an end node can access a channel with less collision probability. We implement CurveALOHA with the software-defined radios and conduct extensive experiments in both indoor and outdoor environments. The results show that CurveALOHA’s network throughput is 59.6% higher than the state-of-the-art carrier-sense MAC.  
|confname= INFOCOM 2022
|confname= INFOCOM 2022
|link=https://cse.msu.edu/~caozc/papers/infocom22-li.pdf
|link=https://cse.msu.edu/~caozc/papers/infocom22-li.pdf

Revision as of 23:16, 13 April 2022

Time: 2022-4-15 10:20
Address: 4th Research Building A527-B
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [INFOCOM 2022] CurveALOHA: Non-linear Chirps Enabled High Throughput Random Channel Access for LoRa, Xiong
    Abstract: Long Range Wide Area Network (LoRaWAN), using the linear chirp for data modulation, is known for its low-power and long-distance communication to connect massive Internetof-Things devices at a low cost. However, LoRaWAN throughput is far behind the demand for the dense and large-scale IoT deployments, due to the frequent collisions with the by-default random channel access (i.e., ALOHA). Recently, some works enable an effective LoRa carrier-sense for collision avoidance. However, the continuous back-off makes the network throughput easily saturated and degrades the energy efficiency at LoRa end nodes. In this paper, we propose CurveALOHA, a brandnew media access control scheme to enhance the throughput of random channel access by embracing non-linear chirps enabled quasi-orthogonal logical channels. First, we empirically show that non-linear chirps can achieve similar noise tolerance ability as the linear one does. Then, we observe that multiple nonlinear chirps can create new logical channels which are quasiorthogonal with the linear one and each other. Finally, given a set of non-linear chirps, we design two random chirp selection methods to guarantee an end node can access a channel with less collision probability. We implement CurveALOHA with the software-defined radios and conduct extensive experiments in both indoor and outdoor environments. The results show that CurveALOHA’s network throughput is 59.6% higher than the state-of-the-art carrier-sense MAC.


History

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}