Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Federated learning (FL) has emerged in edge computing to address limited bandwidth and privacy concerns of traditional cloud-based centralized training. However, the existing FL mechanisms may lead to long training time and consume a tremendous amount of communication resources. In this paper, we propose an efficient FL mechanism, which divides the edge nodes into K clusters by balanced clustering. The edge nodes in one cluster forward their local updates to cluster header for aggregation by synchronous method, called cluster aggregation, while all cluster headers perform the asynchronous method for global aggregation. This processing procedure is called hierarchical aggregation. Our analysis shows that the convergence bound depends on the number of clusters and the training epochs. We formally define the resource-efficient federated learning with hierarchical aggregation (RFL-HA) problem. We propose an efficient algorithm to determine the optimal cluster structure (i.e., the optimal value of K) with resource constraints and extend it to deal with the dynamic network conditions. Extensive simulation results obtained from our study for different models and datasets show that the proposed algorithms can reduce completion time by 34.8%-70% and the communication resource by 33.8%-56.5% while achieving a similar accuracy, compared with the well-known FL mechanisms.
|abstract = Recent advances in network and mobile computing.  
|confname= INFOCOM 2021
|confname=talk
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488756
|link=Resource:Paper_Carnival_2022
|title=Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing
|title=Paper Carnival 2022
|speaker=Jianqi
|speaker=all
}}
}}


=== History ===
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 11:40, 19 September 2022

Time: 2022-6-27 10:30
Address: 4th Research Building A527-B
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [talk] [Resource:Paper_Carnival_2022 Paper Carnival 2022], all
    Abstract: Recent advances in network and mobile computing.

History

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}