Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-09-20 9:00'''
|time='''2023-10-08 16:20'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Recent advances in network and mobile computing.  
|abstract=This paper presents CellFusion, a system designed for high-quality, real-time video streaming from vehicles to the cloud. It leverages an innovative blend of multipath QUIC transport and network coding. Surpassing the limitations of individual cellular carriers, CellFusion uses a unique last-mile overlay that integrates multiple cellular networks into a single, unified cloud connection. This integration is made possible through the use of in-vehicle Customer Premises Equipment (CPEs) and edge-cloud proxy servers.
|confname=Talk
In order to effectively handle unstable cellular connections prone to intense burst losses and unexpected latency spikes as a vehicle moves, CellFusion introduces XNC. This innovative network coding-based transport solution enables efficient and resilient multipath transport. XNC aims to accomplish low latency, minimal traffic redundancy, and reduced computational complexity all at once. CellFusion is secure and transparent by nature and does not require modifications for vehicular apps connecting to it.
|link=[Resource:Paper Carnival 2023|Paper Carnival 2023
We tested CellFusion on 100 self-driving vehicles for over six months with our cloud-native back-end running on 50 CDN PoPs. Through extensive road tests, we show that XNC reduced video packet delay by 71.53% at the 99th percentile versus 5G. At 30Mbps, CellFusion achieved 66.11% ~ 80.62% reduction in video stall ratio versus state-of-the-art multipath transport solutions with less than 10% traffic redundancy.
|title=]
|confname=SIGCOMM '23
|speaker=All
|link=https://dl.acm.org/doi/10.1145/3603269.3604832
|date=2023-9-20
|title=CellFusion: Multipath Vehicle-to-Cloud Video Streaming with Network Coding in the Wild
}}
|speaker=Rong Cong
 
|date=2023-10-08}}
{{Latest_seminar
|abstract=Realizing Digital Twins for Vehicular Networks: Towards Future Network Evolution
|confname=submission
|link=https://mobinets.org/index.php?title=Resource:Seminar
|title=XX Towards Future Network Evolution
|speaker=Zhenguo
|date=2023-10-08}}
{{Latest_seminar
|abstract=Realizing Digital Twins for Vehicular Networks: Towards Future Network Evolution
|confname=Tech. Talk
|link=#
|title=Rechargeable network
|speaker=Prof. Tang Liu
|date=2023-10-08}}
=== History ===
=== History ===


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 17:31, 4 October 2023

Time: 2023-10-08 16:20
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM '23] CellFusion: Multipath Vehicle-to-Cloud Video Streaming with Network Coding in the Wild, Rong Cong
    Abstract: This paper presents CellFusion, a system designed for high-quality, real-time video streaming from vehicles to the cloud. It leverages an innovative blend of multipath QUIC transport and network coding. Surpassing the limitations of individual cellular carriers, CellFusion uses a unique last-mile overlay that integrates multiple cellular networks into a single, unified cloud connection. This integration is made possible through the use of in-vehicle Customer Premises Equipment (CPEs) and edge-cloud proxy servers.

In order to effectively handle unstable cellular connections prone to intense burst losses and unexpected latency spikes as a vehicle moves, CellFusion introduces XNC. This innovative network coding-based transport solution enables efficient and resilient multipath transport. XNC aims to accomplish low latency, minimal traffic redundancy, and reduced computational complexity all at once. CellFusion is secure and transparent by nature and does not require modifications for vehicular apps connecting to it. We tested CellFusion on 100 self-driving vehicles for over six months with our cloud-native back-end running on 50 CDN PoPs. Through extensive road tests, we show that XNC reduced video packet delay by 71.53% at the 99th percentile versus 5G. At 30Mbps, CellFusion achieved 66.11% ~ 80.62% reduction in video stall ratio versus state-of-the-art multipath transport solutions with less than 10% traffic redundancy.

  1. [submission] XX Towards Future Network Evolution, Zhenguo
    Abstract: Realizing Digital Twins for Vehicular Networks: Towards Future Network Evolution
  2. [Tech. Talk] [# Rechargeable network], Prof. Tang Liu
    Abstract: Realizing Digital Twins for Vehicular Networks: Towards Future Network Evolution

History

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}