Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Friday 10:30-12:00'''
|time='''2024-03-22 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].

Revision as of 22:54, 21 March 2024

Time: 2024-03-22 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IROS 2021] Scalable Reinforcement Learning Policies for Multi-Agent Control, Xianyang
    Abstract: We develop a Multi-Agent Reinforcement Learning (MARL) method to learn scalable control policies for target tracking. Our method can handle an arbitrary number of pursuers and targets; we show results for tasks consisting up to 1000 pursuers tracking 1000 targets. We use a decentralized, partially-observable Markov Decision Process framework to model pursuers as agents receiving partial observations (range and bearing) about targets which move using fixed, unknown policies. An attention mechanism is used to parameterize the value function of the agents; this mechanism allows us to handle an arbitrary number of targets. Entropy-regularized off-policy RL methods are used to train a stochastic policy, and we discuss how it enables a hedging behavior between pursuers that leads to a weak form of cooperation in spite of completely decentralized control execution. We further develop a masking heuristic that allows training on smaller problems with few pursuers-targets and execution on much larger problems. Thorough simulation experiments and comparisons to state of the art algorithms are performed to study the scalability of the approach and robustness of performance to varying numbers of agents and targets.
  2. [INFOCOM 2023] Breaking the Throughput Limit of LED-Camera Communication via Superposed Polarization, Mengyu
    Abstract: With the popularity of LED infrastructure and the camera on smartphone, LED-Camera visible light communication (VLC) has become a realistic and promising technology. However, the existing LED-Camera VLC has limited throughput due to the sampling manner of camera. In this paper, by introducing a polarization dimension, we propose a hybrid modulation scheme with LED and polarization signals to boost throughput. Nevertheless, directly mixing LED and polarized signals may suffer from channel conflict. We exploit well-designed packet structure and Symmetric Return-to-Zero Inverted (SRZI) coding to overcome the conflict. In addition, in the demodulation of hybrid signal, we alleviate the noise caused by polarization on the LED signals by polarization background subtraction. We further propose a pixel-free approach to correct the perspective distortion caused by the shift of view angle by adding polarizers around the liquid crystal array. We build a prototype of this hybrid modulation scheme using off-the-shelf optical components. Extensive experimental results demonstrate that the hybrid modulation scheme can achieve reliable communication, achieving 13.4 kbps throughput, which is 400 % of the existing state-of-the-art LED-Camera VLC.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}