Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract=Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device, thus preserving privacy and eliminating the need to store data globally. While there are promising results under the assumption of independent and identically distributed (iid) local data, current state-of-the-art algorithms suffer a performance degradation as the heterogeneity of local data across clients increases. To resolve this issue, we propose a simple framework, \emph{Mean Augmented Federated Learning (MAFL)}, where clients send and receive \emph{averaged} local data, subject to the privacy requirements of target applications. Under our framework, we propose a new augmentation algorithm, named \emph{FedMix}, which is inspired by a phenomenal yet simple data augmentation method, Mixup, but does not require local raw data to be directly shared among devices. Our method shows greatly improved performance in the standard benchmark datasets of FL, under highly non-iid federated settings, compared to conventional algorithms.
|Major cities worldwide have millions of cameras deployed for surveillance, business intelligence, traffic control, crime prevention, etc. Real-time analytics on video data demands intensive computation resources and high energy consumption. Traditional cloud-based video analytics relies on large centralized clusters to ingest video streams. With edge computing, we can offload compute-intensive analysis tasks to nearby servers, thus mitigating long latency incurred by data transmission via wide area networks. When offloading video frames from the front-end device to an edge server, the application configuration (i.e., frame sampling rate and frame resolution) will impact several metrics, such as energy consumption, analytics accuracy and user-perceived latency. In this paper, we study the configuration selection and bandwidth allocation for multiple video streams, which are connected to the same edge node sharing an upload link. We propose an efficient online algorithm, called JCAB, which jointly optimizes configuration adaption and bandwidth allocation to address a number of key challenges in edge-based video analytics systems, including edge capacity limitation, unknown network variation, intrusive dynamics of video contents. Our algorithm is developed based on Lyapunov optimization and Markov approximation, works online without requiring future information, and achieves a provable performance bound. We also extend the proposed algorithms to the multi-edge scenario in which each user or video stream has an additional choice about which edge server to connect. Extensive evaluation results show that the proposed solutions can effectively balance the analytics accuracy and energy consumption while keeping low system latency in a variety of settings.
|confname=ICLR 2021
|confname=IEEE/ACM Transactions on Networking ( Early Access )
|link=https://openreview.net/pdf?id=Ogga20D2HO-
|link=https://ieeexplore.ieee.org/document/9525630
|title=FedMix: Approximation of Mixup under Mean Augmented Federated Learning
|title=Adaptive Configuration Selection and Bandwidth Allocation for Edge-Based Video Analytics
|speaker=Jianqi
|speaker=Rong Cong
}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract=Function-as-a-Service (FaaS) is becoming a prevalent paradigm in developing cloud applications. With FaaS, clients can develop applications as serverless functions, leaving the burden of resource management to cloud providers. However, FaaS platforms suffer from the performance degradation caused by the cold starts of serverless functions. Cold starts happen when serverless functions are invoked before they have been loaded into the memory. The problem is unavoidable because the memory in datacenters is typically too limited to hold all serverless functions simultaneously. The latency of cold function invocations will greatly degenerate the performance of FaaS platforms. Currently, FaaS platforms employ various scheduling methods to reduce the occurrences of cold starts. However, they do not consider the ubiquitous dependencies between serverless functions. Observing the potential of using dependencies to mitigate cold starts, we propose Defuse, a Dependency-guided Function Scheduler on FaaS platforms. Specifically, Defuse identifies two types of dependencies between serverless functions, i.e., strong dependencies and weak ones. It uses frequent pattern mining and positive point-wise mutual information to mine such dependencies respectively from function invocation histories. In this way, Defuse constructs a function dependency graph. The connected components (i.e., dependent functions) on the graph can be scheduled to diminish the occurrences of cold starts. We evaluate the effectiveness of Defuse by applying it to an industrial serverless dataset. The experimental results show that Defuse can reduce 22% of memory usage while having a 35% decrease in function cold-start rates compared with the state-of-the-art method.
|Millions of cameras at edge are being deployed to power a variety of different deep learning applications. However, the frames captured by these cameras are not always pristine - they can be distorted due to lighting issues, sensor noise, compression etc. Such distortions not only deteriorate visual quality, they impact the accuracy of deep learning applications that process such video streams. In this work, we introduce AQuA, to protect application accuracy against such distorted frames by scoring the level of distortion in the frames. It takes into account the analytical quality of frames, not the visual quality, by learning a novel metric, classifier opinion score, and uses a lightweight, CNN-based, object-independent feature extractor. AQuA accurately scores distortion levels of frames and generalizes to multiple different deep learning applications. When used for filtering poor quality frames at edge, it reduces high-confidence errors for analytics applications by 17%. Through filtering, and due to its low overhead (14ms), AQuA can also reduce computation time and average bandwidth usage by 25%.
|confname=ICDCS 2021
|confname=ACM/IEEE Symposium on Edge Computing 2021
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9546470
|link=https://arxiv.org/abs/2101.09752
|title=Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on FaaS Platforms
|title=AQuA: Analytical Quality Assessment for Optimizing Video Analytics Systems
|speaker=Linyuanqi
|speaker=Rong Cong
}}
{{Latest_seminar
|This paper presents the design and implementation of PCube, a phase-based parallel packet decoder for concurrent transmissions of LoRa nodes. The key enabling technology behind PCube is a novel air-channel phase measurement technique which is able to extract phase differences of air-channels between LoRa nodes and multiple antennas of a gateway. PCube leverages the reception diversities of multiple receiving antennas of a gateway and scales the concurrent transmissions of a large number of LoRa nodes, even exceeding the number of receiving antennas at a gateway. As a phase-based parallel decoder, PCube provides a new dimension to resolve collisions and supports more concurrent transmissions by complementing time and frequency based parallel decoders. PCube is implemented and evaluated with synchronized software defined radios and off-the-shelf LoRa nodes in both indoors and outdoors. Results demonstrate that PCube can substantially outperform state-of-the-art works in terms of aggregated throughput by 4.9× and the number of concurrent nodes by up to 5×. More importantly, PCube scales well with the number of receiving antennas of a gateway, which is promising to break the barrier of concurrent transmissions.
|confname= MobiCom'21
|link= https://dl.acm.org/doi/abs/10.1145/3447993.3483268
|title=Defuse: PCube: scaling LoRa concurrent transmissions with reception diversities
|speaker=Kaiwen Zheng
}}
}}


=== History ===
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 12:35, 10 November 2021

Time: 2021-11-05 8:40
Address: Main Building B1-612
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IEEE/ACM Transactions on Networking ( Early Access )] Adaptive Configuration Selection and Bandwidth Allocation for Edge-Based Video Analytics, Rong Cong
    Abstract: {{{abstract}}}
  2. [ACM/IEEE Symposium on Edge Computing 2021] AQuA: Analytical Quality Assessment for Optimizing Video Analytics Systems, Rong Cong
    Abstract: {{{abstract}}}
  3. [MobiCom'21] Defuse: PCube: scaling LoRa concurrent transmissions with reception diversities, Kaiwen Zheng
    Abstract: {{{abstract}}}

History

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}