Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing facilitates users to offload computation tasks to edge servers for meeting their stringent delay requirements. Previous works mainly explore task offloading when system-side information is given (e.g., server processing speed, cellular data rate), or centralized offloading under system uncertainty. But both generally fall short to handle task placement involving many coexisting users in a dynamic and uncertain environment. In this paper, we develop a multi-user offloading framework considering unknown yet stochastic system�side information to enable a decentralized user-initiated service placement. Specifically, we formulate the dynamic task placement as an online multi-user multi-armed bandit process, and propose a decentralized epoch based offloading (DEBO) to optimize user rewards which are subjected under network delay. We show that DEBO can deduce the optimal user-server assignment, thereby achieving a close-to-optimal service performance and tight O(log T) offloading regret. Moreover, we generalize DEBO to various common scenarios such as unknown reward gap, dynamic entering or leaving of clients, and fair reward distribution, while further exploring when users’ offloaded tasks require heterogeneous computing resources. Particularly, we accomplish a sub-linear regret for each of these instances. Real measurements based evaluations corroborate the superiority of our offloading schemes over state-of-the-art approaches in optimizing delay-sensitive rewards.
|abstract = Mobile edge computing facilitates users to offload computation tasks to edge servers for meeting their stringent delay requirements. Previous works mainly explore task offloading when system-side information is given (e.g., server processing speed, cellular data rate), or centralized offloading under system uncertainty. But both generally fall short to handle task placement involving many coexisting users in a dynamic and uncertain environment. In this paper, we develop a multi-user offloading framework considering unknown yet stochastic system side information to enable a decentralized user-initiated service placement. Specifically, we formulate the dynamic task placement as an online multi-user multi-armed bandit process, and propose a decentralized epoch based offloading (DEBO) to optimize user rewards which are subjected under network delay. We show that DEBO can deduce the optimal user-server assignment, thereby achieving a close-to-optimal service performance and tight O(log T) offloading regret. Moreover, we generalize DEBO to various common scenarios such as unknown reward gap, dynamic entering or leaving of clients, and fair reward distribution, while further exploring when users’ offloaded tasks require heterogeneous computing resources. Particularly, we accomplish a sub-linear regret for each of these instances. Real measurements based evaluations corroborate the superiority of our offloading schemes over state-of-the-art approaches in optimizing delay-sensitive rewards.
|confname= INFOCOM 2022
|confname= INFOCOM 2022
|link=https://arxiv.org/pdf/2112.11818v1.pdf
|link=https://arxiv.org/pdf/2112.11818v1.pdf

Revision as of 10:45, 6 April 2022

Time: 2022-3-18 10:20
Address: 4th Research Building A527-B
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [INFOCOM 2022] Decentralized Task Offloading in Edge Computing: A Multi-User Multi-Armed Bandit Approach, Wenjie
    Abstract: Mobile edge computing facilitates users to offload computation tasks to edge servers for meeting their stringent delay requirements. Previous works mainly explore task offloading when system-side information is given (e.g., server processing speed, cellular data rate), or centralized offloading under system uncertainty. But both generally fall short to handle task placement involving many coexisting users in a dynamic and uncertain environment. In this paper, we develop a multi-user offloading framework considering unknown yet stochastic system side information to enable a decentralized user-initiated service placement. Specifically, we formulate the dynamic task placement as an online multi-user multi-armed bandit process, and propose a decentralized epoch based offloading (DEBO) to optimize user rewards which are subjected under network delay. We show that DEBO can deduce the optimal user-server assignment, thereby achieving a close-to-optimal service performance and tight O(log T) offloading regret. Moreover, we generalize DEBO to various common scenarios such as unknown reward gap, dynamic entering or leaving of clients, and fair reward distribution, while further exploring when users’ offloaded tasks require heterogeneous computing resources. Particularly, we accomplish a sub-linear regret for each of these instances. Real measurements based evaluations corroborate the superiority of our offloading schemes over state-of-the-art approaches in optimizing delay-sensitive rewards.
  2. [INFOCOM 2021] EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision, Xianyang
    Abstract: Accurate, real-time object detection on resource-constrained devices enables autonomous mobile vision applications such as traffic surveillance, situational awareness, and safety inspection, where it is crucial to detect both small and large objects in crowded scenes. Prior studies either perform object detection locally on-board or offload the task to the edge/cloud. Local object detection yields low accuracy on small objects since it operates on low-resolution videos to fit in mobile memory. Offloaded object detection incurs high latency due to uploading high-resolution videos to the edge/cloud. Rather than either pure local processing or offloading, we propose to detect large objects locally while offloading small object detection to the edge. The key challenge is to reduce the latency of small object detection. Accordingly, we develop EdgeDuet, the first edge-device collaborative framework for enhancing small object detection with tile-level parallelism. It optimizes the offloaded detection pipeline in tiles rather than the entire frame for high accuracy and low latency. Evaluations on drone vision datasets under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet outperforms local object detection in small object detection accuracy by 233.0%. It also improves the detection accuracy by 44.7% and latency by 34.2% over the state-of-the-art offloading schemes.

History

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}