Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
m
Line 19: Line 19:
|speaker=Qinyong}}
|speaker=Qinyong}}
{{Latest_seminar
{{Latest_seminar
|abstract = Vehicular edge computing (VEC) is a promising paradigm based on the Internet of vehicles to provide computing resources for end users and relieve heavy traffic burden for cellular networks. In this paper, we consider a VEC network with dynamic topologies, unstable connections and unpredictable movements. Vehicles inside can offload computation tasks to available neighboring VEC clusters formed by onboard resources, with the purpose of both minimizing system energy consumption and satisfying task latency constraints. For online task scheduling, existing researches either design heuristic algorithms or leverage machine learning, e.g., deep reinforcement learning (DRL). However, these algorithms are not efficient enough because of their low searching efficiency and slow convergence speeds for large-scale networks. Instead, we propose an imitation learning enabled online task scheduling algorithm with near-optimal performance from the initial stage. Specially, an expert can obtain the optimal scheduling policy by solving the formulated optimization problem with a few samples offline. For online learning, we train agent policies by following the expert’s demonstration with an acceptable performance gap in theory. Performance results show that our solution has a significant advantage with more than 50 percent improvement compared with the benchmark.
|abstract = The edge-cloud system has the potential to combine the advantages of heterogeneous devices and truly realize ubiquitous computing. However, for service providers to guarantee the Service-Level-Agreement (SLA) priorities, the complex networked environment brings inherent challenges such as multi-resource heterogeneity, resource competition, and networked system dynamics. In this paper, we design a framework for the edge-cloud system, namely EdgeMatrix, to maximize the throughput while guaranteeing various SLA priorities. First, EdgeMatrix introduces Networked Multi-agent Actor-Critic (NMAC) algorithm to redefine physical resources as logically isolated resource combinations, i.e., resource cells. Then, we use a clustering algorithm to group the cells with similar characteristics into various sets, i.e., resource channels, for different channels can offer different SLA guarantees. Besides, we design a multi-task mechanism to solve the problem of joint service orchestration and request dispatch (JSORD) among edge-cloud clusters, significantly reducing the runtime than traditional methods. To ensure stability, EdgeMatrix adopts a two-time-scale framework, i.e., coordinating resources and services at the large time scale and dispatching requests at the small time scale. The real trace-based experimental results verify that EdgeMatrix can improve system throughput in complex networked environments, reduce SLA violations, and significantly reduce the runtime than traditional methods.
|confname=TMC 2022
|confname=INFOCOM 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9151371
|link=https://arxiv.org/pdf/2203.10470
|title=Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing
|title=EdgeMatrix: A Resources Redefined Edge-Cloud System for Prioritized Services
|speaker=Zhenguo}}
|speaker=Xinyu}}





Revision as of 11:20, 24 October 2022

Time: 2022-10-25 16:30
Address: 4th Research Building A527-B
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom 2021] One Tag, Two Codes: Identifying Optical Barcodes with NFC, Jiangshu
    Abstract: Barcodes and NFC have become the de facto standards in the field of automatic identification and data capture. These standards have been widely adopted for many applications, such as mobile payments, advertisements, social sharing, admission control, and so on. Recently, considerable demands require the integration of these two codes (barcode and NFC code) into a single tag for the functional complementation. To achieve the goal of "one tag, two codes" (OTTC), this work proposes CoilCode, which takes advantage of the printed electronics to fuse an NFC coil antenna into a QR code on a single layer. The proposed code could be identified by cameras and NFC readers. With the use of the conductive inks, QR code and NFC code have become an essential part of each other: the modules of the QR code facilitate the NFC chip in harvesting energy from the magnetic field, while the NFC antenna itself represents bits of the QR code. Compared to the prior dual-layer OTTC, CoilCode is more compact, cost-effective, flimsy, flexible, and environment-friendly, and also reduces the fabrication complexity considerably. We prototyped hundreds of CoilCodes and conducted comprehensive evaluations (across 4 models of NFC chips and 8 kinds of NFC readers under 13 different system configurations). CoilCode demonstrates high-quality identification results for QR code and NFC functions on a wide range of inputs and under different distortion effects.
  2. [IoTJ 2022] Service Coverage for Satellite Edge Computing, Qinyong
    Abstract: Recently, increasing investments in satellite-related technologies make the low earth orbit (LEO) satellite constellation a strong complement to terrestrial networks. To mitigate the limitations of the traditional satellite constellation “bent-pipe” architecture, satellite edge computing (SEC) has been proposed by placing computing resources at the LEO satellite constellation. Most existing works focus on space-air-ground integrated network architecture and SEC computing framework. Beyond these works, we are the first to investigate how to efficiently deploy services on the SEC nodes to realize robustness aware service coverage with constrained resources. Facing the challenges of spatial-temporal system dynamics and service coverage-robustness conflict, we propose a novel online service placement algorithm with a theoretical performance guarantee by leveraging Lyapunov optimization and Gibbs sampling. Extensive simulation results show that our algorithm can improve the service coverage by 4.3× compared with the baseline.
  3. [INFOCOM 2022] EdgeMatrix: A Resources Redefined Edge-Cloud System for Prioritized Services, Xinyu
    Abstract: The edge-cloud system has the potential to combine the advantages of heterogeneous devices and truly realize ubiquitous computing. However, for service providers to guarantee the Service-Level-Agreement (SLA) priorities, the complex networked environment brings inherent challenges such as multi-resource heterogeneity, resource competition, and networked system dynamics. In this paper, we design a framework for the edge-cloud system, namely EdgeMatrix, to maximize the throughput while guaranteeing various SLA priorities. First, EdgeMatrix introduces Networked Multi-agent Actor-Critic (NMAC) algorithm to redefine physical resources as logically isolated resource combinations, i.e., resource cells. Then, we use a clustering algorithm to group the cells with similar characteristics into various sets, i.e., resource channels, for different channels can offer different SLA guarantees. Besides, we design a multi-task mechanism to solve the problem of joint service orchestration and request dispatch (JSORD) among edge-cloud clusters, significantly reducing the runtime than traditional methods. To ensure stability, EdgeMatrix adopts a two-time-scale framework, i.e., coordinating resources and services at the large time scale and dispatching requests at the small time scale. The real trace-based experimental results verify that EdgeMatrix can improve system throughput in complex networked environments, reduce SLA violations, and significantly reduce the runtime than traditional methods.


History

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}