Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Satellite routers in emerging space-terrestrial integrated networks (STINs) are operated in a failure-prone, intermittent and resource-constrained space environment, making it very critical but challenging to cope with various network failures effectively. Existing resilient routing approaches either suffer from continuous re-convergences with low network reachability, or involve prohibitive pre-computation and storage overhead due to the huge amount of possible failure scenarios in STINs.This paper presents StarCure, a novel resilient routing mechanism for futuristic STINs. StarCure aims at achieving fast and efficient routing restoration, while maintaining the low-latency, high-bandwidth service capabilities in failure-prone space environments. First, StarCure incorporates a new network model, called the topology-stabilizing model (TSM) to eliminate topological uncertainty by converting the topology variations caused by various failures to traffic variations. Second, StarCure adopts an adaptive hybrid routing scheme, collaboratively combining a constraint optimizer to efficiently handle predictable failures, together with a location-guided protection routing strategy to quickly deal with unexpected failures. Extensive evaluations driven by realistic constellation information show that, StarCure can protect routing against various failures, achieving close-to-100% reachability and better performance restoration with acceptable system overhead, as compared to other existing resilience solutions.
|abstract=We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
|confname=INFOCOM 2023
|confname=MobiCom 2023
|link=https://ieeexplore.ieee.org/document/10229104
|link=https://dl.acm.org/doi/10.1145/3570361.3592523
|title=Achieving Resilient and Performance-Guaranteed Routing in Space-Terrestrial Integrated Networks
|title=NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras
|speaker=Luwei
|speaker=Jiyi
|date=2024-03-29}}
|date=2024-04-12}}
{{Latest_seminar
{{Latest_seminar
|abstract=We propose a Communication-aware Pruning (CaP) algorithm, a novel distributed inference framework for distributing DNN computations across a physical network. Departing from conventional pruning methods, CaP takes the physical network topology into consideration and produces DNNs that are communication-aware, designed for both accurate and fast execution over such a distributed deployment. Our experiments on CIFAR-10 and CIFAR-100, two deep learning benchmark datasets, show that CaP beats state of the art competitors by up to 4% w.r.t. accuracy on benchmarks. On experiments over real-world scenarios, it simultaneously reduces total execution time by 27%–68% at negligible performance decrease (less than 1%).
|abstract=The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
|confname=INFOCOM 2023
|confname=Neurips 2017
|link=https://ieeexplore.ieee.org/document/10229043
|link=https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
|title=Communication-aware DNN pruning
|title=Attention Is All You Need
|speaker=Shuhong
|speaker=Qinyong
|date=2024-03-29}}
|date=2024-04-12}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 16:13, 7 April 2024

Time: 2024-03-22 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom 2023] NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras, Jiyi
    Abstract: We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
  2. [Neurips 2017] Attention Is All You Need, Qinyong
    Abstract: The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}