Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 14: Line 14:
|date=2024-05-10}}
|date=2024-05-10}}
{{Latest_seminar
{{Latest_seminar
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname=IPSN 2023
|confname=INFOCOM 2023
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Kai Chen
|speaker=Rong Cong
|date=2024-05-10}
|date=2024-05-10}}
}
{{Latest_seminar
|abstract=User-associated contents play an increasingly important role in modern network applications. With growing deployments of edge servers, the capacity of content storage in edge clusters significantly increases, which provides great potential to satisfy content requests with much shorter latency. However, the large number of contents also causes the difficulty of searching contents on edge servers in different locations because indexing contents costs huge DRAM on each edge server. In this work, we explore the opportunity of efficiently indexing user-associated contents and propose a scal-able content-sharing mechanism for edge servers, called EdgeCut, that significantly reduces content access latency by allowing many edge servers to share their cached contents. We design a compact and dynamic data structure called Ludo Locator that returns the IP address of the edge server that stores the requested user-associated content. We have implemented a prototype of EdgeCut in a real network environment running in a public geo-distributed cloud. The experiment results show that EdgeCut reduces content access latency by up to 50% and reduces cloud traffic by up to 50% compared to existing solutions. The memory cost is less than 50MB for 10 million mobile users. The simulations using real network latency data show EdgeCut's advantages over existing solutions on a large scale.
|confname=SEC 2023
|link=https://ieeexplore.ieee.org/abstract/document/10419278/
|title=EdgeCut: Fast and Low-overhead Access of User-associated Contents from Edge Servers
|speaker=Rong Cong
|date=2024-05-10}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 19:59, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
  3. [SEC 2023] EdgeCut: Fast and Low-overhead Access of User-associated Contents from Edge Servers, Rong Cong
    Abstract: User-associated contents play an increasingly important role in modern network applications. With growing deployments of edge servers, the capacity of content storage in edge clusters significantly increases, which provides great potential to satisfy content requests with much shorter latency. However, the large number of contents also causes the difficulty of searching contents on edge servers in different locations because indexing contents costs huge DRAM on each edge server. In this work, we explore the opportunity of efficiently indexing user-associated contents and propose a scal-able content-sharing mechanism for edge servers, called EdgeCut, that significantly reduces content access latency by allowing many edge servers to share their cached contents. We design a compact and dynamic data structure called Ludo Locator that returns the IP address of the edge server that stores the requested user-associated content. We have implemented a prototype of EdgeCut in a real network environment running in a public geo-distributed cloud. The experiment results show that EdgeCut reduces content access latency by up to 50% and reduces cloud traffic by up to 50% compared to existing solutions. The memory cost is less than 50MB for 10 million mobile users. The simulations using real network latency data show EdgeCut's advantages over existing solutions on a large scale.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}