Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Packet loss due to link corruption is a major problem in large warehouse-scale datacenters. The current state-of-the-art approach of disabling corrupting links is not adequate because, in practice, all the corrupting links cannot be disabled due to capacity constraints. In this paper, we show that, it is feasible to implement link-local retransmission at sub-RTT timescales to completely mask corruption packet losses from the transport endpoints. Our system, LinkGuardian, employs a range of techniques to (i) keep the packet buffer requirement low, (ii) recover from tail packet losses without employing timeouts, and (iii) preserve packet ordering. We implement LinkGuardian on the Intel Tofino switch and show that for a 100G link with a loss rate of 10−3, LinkGuardian can reduce the loss rate by up to 6 orders of magnitude while incurring only 8% reduction in effective link speed. By eliminating tail packet losses, LinkGuardian improves the 99.9th percentile flow completion time (FCT) for TCP and RDMA by 51x and 66x respectively. Finally, we also show that in the context of datacenter networks, simple out-of-order retransmission is often sufficient to significantly mitigate the impact of corruption packet loss for short TCP flows.
|abstract=Connected autonomous vehicles have boosted a high demand on communication throughput in order to timely share the information collected by in-car sensors (e.g., LiDAR). While visible light communication (VLC) has shown its capability to offer Gigabit-level throughput for applications with high demand for data rate, most are performed indoors and the throughput of outdoor VLC drops to a few Mbps. To fill this performance gap, this paper presents RayTrack, an interference-free outdoor mobile VLC system. The key idea of RayTrack is to use a small but real-time adjustable FOV according to the transmitter location, which can effectively repel interference from the environment and from other transmitters and boost the system throughput. The idea also realizes virtual point-to-point links, and eliminates the need of link access control. To be able to minimize the transmitter detection time to only 20 ms, RayTrack leverages a high-compression-ratio compressive sensing scheme, incorporating a dual-photodiode architecture, optimized measurement matrix and Gaussian-based basis to increase sparsity. Real-world driving experiments show that RayTrack is able to achieve a data rate of 607.9 kbps with over 90% detection accuracy and lower than 15% bit error rate at 35 m, with 70 - 100 km/hr driving speed. To the best of our knowledge, this is the first working outdoor VLC system which can offer such range, throughput and error performance while accommodating freeway mobility.
|confname=SIGCOMM '23
|confname=MobiSys'21
|link=https://dl.acm.org/doi/pdf/10.1145/3603269.3604853
|link=https://dl.acm.org/doi/10.1145/3458864.3466867
|title=Masking Corruption Packet Losses in Datacenter Networks with Link-local Retransmission
|title=RayTrack: enabling interference-free outdoor mobile VLC with dynamic field-of-view
|speaker=Jiacheng
|speaker=Mengyu
|date=2024-05-31}}
|date=2024-06-07}}
{{Latest_seminar
{{Latest_seminar
|abstract=Disaggregated memory systems separate monolithic servers into different components, including compute and memory nodes, to enjoy the benefits of high resource utilization, flexible hardware scalability, and efficient data sharing. By exploiting the high-performance RDMA (Remote Direct Memory Access), the compute nodes directly access the remote memory pool without involving remote CPUs. Hence, the ordered key-value (KV) stores (e.g., B-trees and learned indexes) keep all data sorted to provide rang query service via the high-performance network. However, existing ordered KVs fail to work well on the disaggregated memory systems, due to either consuming multiple network roundtrips to search the remote data or heavily relying on the memory nodes equipped with insufficient computing resources to process data modifications. In this paper, we propose a scalable RDMA-oriented KV store with learned indexes, called ROLEX, to coalesce the ordered KV store in the disaggregated systems for efficient data storage and retrieval. ROLEX leverages a retraining-decoupled learned index scheme to dissociate the model retraining from data modification operations via adding a bias and some data-movement constraints to learned models. Based on the operation decoupling, data modifications are directly executed in compute nodes via one-sided RDMA verbs with high scalability. The model retraining is hence removed from the critical path of data modification and asynchronously executed in memory nodes by using dedicated computing resources. Our experimental results on YCSB and real-world workloads demonstrate that ROLEX achieves competitive performance on the static workloads, as well as significantly improving the performance on dynamic workloads by up to 2.2 times than state-of-the-art schemes on the disaggregated memory systems. We have released the open-source codes for public use in GitHub.
|abstract=Volumetric videos offer viewers more immersive experiences, enabling a variety of applications. However, state-of-the-art streaming systems still need hundreds of Mbps, exceeding the common bandwidth capabilities of mobile devices. We find a research gap in reusing inter-frame redundant information to reduce bandwidth consumption, while the existing inter-frame compression methods rely on the so-called explicit correlation, i.e., the redundancy from the same/adjacent locations in the previous frame, which does not apply to highly dynamic frames or dynamic viewports. This work introduces a new concept called implicit correlation, i.e., the consistency of topological structures, which stably exists in dynamic frames and is beneficial for reducing bandwidth consumption. We design a mobile volumetric video streaming system Hermes consisting of an implicit correlation encoder to reduce bandwidth consumption and a hybrid streaming method that adapts to dynamic viewports. Experiments show that Hermes achieves a frame rate of 30+ FPS over daily networks and on commodity smartphones, with at least 3.37x improvement compared with two baselines.
|confname=FAST '23
|confname=MM'23
|link=https://www.usenix.org/system/files/fast23-li-pengfei.pdf
|link=https://dl.acm.org/doi/pdf/10.1145/3581783.3613907
|title=ROLEX: A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Memory Systems
|title=Hermes: Leveraging Implicit Inter-Frame Correlation for Bandwidth-Efficient Mobile Volumetric Video Streaming
|speaker=Haotian
|speaker=Mengfan
|date=2024-05-31}}
|date=2024-06-07}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 22:05, 4 June 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiSys'21] RayTrack: enabling interference-free outdoor mobile VLC with dynamic field-of-view, Mengyu
    Abstract: Connected autonomous vehicles have boosted a high demand on communication throughput in order to timely share the information collected by in-car sensors (e.g., LiDAR). While visible light communication (VLC) has shown its capability to offer Gigabit-level throughput for applications with high demand for data rate, most are performed indoors and the throughput of outdoor VLC drops to a few Mbps. To fill this performance gap, this paper presents RayTrack, an interference-free outdoor mobile VLC system. The key idea of RayTrack is to use a small but real-time adjustable FOV according to the transmitter location, which can effectively repel interference from the environment and from other transmitters and boost the system throughput. The idea also realizes virtual point-to-point links, and eliminates the need of link access control. To be able to minimize the transmitter detection time to only 20 ms, RayTrack leverages a high-compression-ratio compressive sensing scheme, incorporating a dual-photodiode architecture, optimized measurement matrix and Gaussian-based basis to increase sparsity. Real-world driving experiments show that RayTrack is able to achieve a data rate of 607.9 kbps with over 90% detection accuracy and lower than 15% bit error rate at 35 m, with 70 - 100 km/hr driving speed. To the best of our knowledge, this is the first working outdoor VLC system which can offer such range, throughput and error performance while accommodating freeway mobility.
  2. [MM'23] Hermes: Leveraging Implicit Inter-Frame Correlation for Bandwidth-Efficient Mobile Volumetric Video Streaming, Mengfan
    Abstract: Volumetric videos offer viewers more immersive experiences, enabling a variety of applications. However, state-of-the-art streaming systems still need hundreds of Mbps, exceeding the common bandwidth capabilities of mobile devices. We find a research gap in reusing inter-frame redundant information to reduce bandwidth consumption, while the existing inter-frame compression methods rely on the so-called explicit correlation, i.e., the redundancy from the same/adjacent locations in the previous frame, which does not apply to highly dynamic frames or dynamic viewports. This work introduces a new concept called implicit correlation, i.e., the consistency of topological structures, which stably exists in dynamic frames and is beneficial for reducing bandwidth consumption. We design a mobile volumetric video streaming system Hermes consisting of an implicit correlation encoder to reduce bandwidth consumption and a hybrid streaming method that adapts to dynamic viewports. Experiments show that Hermes achieves a frame rate of 30+ FPS over daily networks and on commodity smartphones, with at least 3.37x improvement compared with two baselines.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}