Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = In this paper, we revisit the problem of the current routing system in terms of prediction scalability and routing result optimality. Specifically, the current traffic prediction models are not suitable for large urban networks due to the incomplete information of traffic conditions. Besides, existing routing systems can only plan the routes based on the past traffic conditions and struggle to update the optimal route for vehicles in real-time. As a result, the actual route taken by vehicles is different from the ground-truth optimal path. Therefore, we propose a Just-In-Time Predictive Route Planning framework to tackle these two problems. Firstly, we propose a Travel Time Constrained Top- kn Shortest Path algorithm which pre-computes a set of candidate paths with several switch points. This empowers vehicles to continuously have the opportunity to switch to better paths taking into account real-time traffic condition changes. Moreover, we present a query-driven prediction paradigm with ellipse-based searching space estimation, along with an efficient multi-queries handling mechanism. This not only allows for targeted traffic prediction by prioritizing regions with valuable yet outdated traffic information, but also provides optimal results for multiple queries based on real-time traffic evolution. Evaluations on two real-life road networks demonstrate the effectiveness and efficiency of our framework and methods.
|abstract = Collaborative inference is the current state-of-the-art solution for mobile-server neural network inference offloading. However, we find that existing collaborative inference solutions only focus on partitioning the DNN computation, which is only a small part of achieving an efficient DNN offloading system. What ultimately determines the performance of DNN offloading is how the execution system utilizes the characteristics of the given DNN offloading task on the mobile, network, and server resources of the offloading environment. To this end, we design CoActo, a DNN execution system built from the ground up for mobile-server inference offloading. Our key design philosophy is Coactive Inference Offloading, which is a new, improved concept of DNN offloading that adds two properties, 1) fine-grained expression of DNNs and 2) concurrency of runtime resources, to existing collaborative inference. In CoActo, system components go beyond simple model splitting of existing approaches and operate more proactively to achieve the coactive execution of inference workloads. CoActo dynamically schedules concurrent interleaving of the mobile, server, and network operations to actively increase resource utilization, enabling lower end-to-end latency. We implement CoActo for various mobile devices and server environments and evaluate our system with distinct environment settings and DNN models. The experimental results show that our system achieves up to 2.1 times speed-up compared to the state-of-the-art collaborative inference solutions.
|confname =ICDE'24
|confname = Mobisys'24
|link = https://ieeexplore.ieee.org/document/10598147/authors#authors
|link = https://ieeexplore.ieee.org/document/10598147/authors#authors
|title= A Just-In-Time Framework for Continuous Routing
|title= CoActo: CoActive Neural Network Inference Offloading with Fine-grained and Concurrent Execution
|speaker=Zhenguo
|speaker=Zhenhua
|date=2024-11-8
|date=2024-11-22
}}
{{Latest_seminar
|abstract = Many networking tasks now employ deep learning (DL) to solve complex prediction and optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the powerful pre-trained knowledge, the LLM is promising to serve as the foundation model to achieve "one model for all tasks" with even better performance and stronger generalization. In pursuit of this vision, we present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems. Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers. Besides, NetLLM drastically reduces the costs of fine-tuning the LLM to acquire domain knowledge for networking. Across three networking-related use cases - viewport prediction, adaptive bitrate streaming and cluster job scheduling, we showcase that the NetLLM-adapted LLM significantly outperforms state-of-the-art algorithms.
|confname =SIGCOMM'24
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672268
|title= NetLLM: Adapting Large Language Models for Networking
|speaker=Yinghao
|date=2024-11-8
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 15:18, 21 November 2024

Time: 2024-11-8 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Mobisys'24] CoActo: CoActive Neural Network Inference Offloading with Fine-grained and Concurrent Execution, Zhenhua
    Abstract: Collaborative inference is the current state-of-the-art solution for mobile-server neural network inference offloading. However, we find that existing collaborative inference solutions only focus on partitioning the DNN computation, which is only a small part of achieving an efficient DNN offloading system. What ultimately determines the performance of DNN offloading is how the execution system utilizes the characteristics of the given DNN offloading task on the mobile, network, and server resources of the offloading environment. To this end, we design CoActo, a DNN execution system built from the ground up for mobile-server inference offloading. Our key design philosophy is Coactive Inference Offloading, which is a new, improved concept of DNN offloading that adds two properties, 1) fine-grained expression of DNNs and 2) concurrency of runtime resources, to existing collaborative inference. In CoActo, system components go beyond simple model splitting of existing approaches and operate more proactively to achieve the coactive execution of inference workloads. CoActo dynamically schedules concurrent interleaving of the mobile, server, and network operations to actively increase resource utilization, enabling lower end-to-end latency. We implement CoActo for various mobile devices and server environments and evaluate our system with distinct environment settings and DNN models. The experimental results show that our system achieves up to 2.1 times speed-up compared to the state-of-the-art collaborative inference solutions.


History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}