Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
 
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-12-06 10:30-12:00'''
|time='''2025-01-03 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
|note=Useful links: [[Resource:Reading_List|📚 Readling list]]; [[Resource:Seminar_schedules|📆 Schedules]]; [[Resource:Previous_Seminars|🧐 Previous seminars]].
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Packet routing in virtual networks requires virtual-to-physical address translation. The address mappings are updated by a single party, i.e., the network administrator, but they are read by multiple devices across the network when routing tenant packets. Existing approaches face an inherent read-write performance tradeoff: they either store these mappings in dedicated gateways for fast updates at the cost of slower forwarding or replicate them at end-hosts and suffer from slow updates.SwitchV2P aims to escape this tradeoff by leveraging the network switches to transparently cache the address mappings while learning them from the traffic. SwitchV2P brings the mappings closer to the sender, thus reducing the first packet latency and translation overheads, while simultaneously enabling fast mapping updates, all without changing existing routing policies and deployed gateways. The topology-aware data-plane caching protocol allows the switches to transparently adapt to changing network conditions and varying in-switch memory capacity.Our evaluation shows the benefits of in-network address mapping, including an up to 7.8× and 4.3× reduction in FCT and first packet latency respectively, and a substantial reduction in translation gateway load. Additionally, SwitchV2P achieves up to a 1.9× reduction in bandwidth overheads and requires order-of-magnitude fewer gateways for equivalent performance.
|abstract = Volumetric videos offer a unique interactive experience and have the potential to enhance social virtual reality and telepresence. Streaming volumetric videos to multiple users remains a challenge due to its tremendous requirements of network and computation resources. In this paper, we develop MuV2, an edge-assisted multi-user mobile volumetric video streaming system to support important use cases such as tens of students simultaneously consuming volumetric content in a classroom. MuV2 achieves high scalability and good streaming quality through three orthogonal designs: hybridizing direct streaming of 3D volumetric content with remote rendering, dynamically sharing edge-transcoded views across users, and multiplexing encoding tasks of multiple transcoding sessions into a limited number of hardware encoders on the edge. MuV2 then integrates the three designs into a holistic optimization framework. We fully implement MuV2 and experimentally demonstrate that MuV2 can deliver high-quality volumetric videos to over 30 concurrent untethered mobile devices with a single WiFi access point and a commodity edge server.
|confname =SIGCOMM'24
|confname =MobiCom'24
|link = https://dl.acm.org/doi/abs/10.1145/3651890.3672213
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3649364
|title= In-Network Address Caching for Virtual Networks
|title= MuV2: Scaling up Multi-user Mobile Volumetric Video Streaming via Content Hybridization and Sharing
|speaker=Dongting
|speaker=Jiyi
|date=2024-12-06
|date=2025-01-03
}}{{Latest_seminar
}}{{Latest_seminar
|abstract = Visible light communication (VLC) has become an important complementary means to electromagnetic communications due to its freedom from interference. However, existing Internet-of-Things (IoT) VLC links can reach only <10 meters, which has significantly limited the applications of VLC to the vast and diverse scenarios. In this paper, we propose ChirpVLC, a novel modulation method to prolong VLC distance from ≤10 meters to over 100 meters. The basic idea of ChirpVLC is to trade throughput for prolonged distance by exploiting Chirp Spread Spectrum (CSS) modulation. Specifically, 1) we modulate the luminous intensity as a sinusoidal waveform with a linearly varying frequency and design different spreading factors (SF) for different environmental conditions. 2) We design range adaptation scheme for luminance sensing range to help receivers achieve better signal-to-noise ratio (SNR). 3) ChirpVLC supports many-to-one and non-line-of-sight communications, breaking through the limitations of visible light communication. We implement ChirpVLC and conduct extensive real-world experiments. The results show that ChirpVLC can extend the transmission distance of 5W COTS LEDs to over 100 meters, and the distance/energy utility is increased by 532% compared to the existing work.
|abstract = The advent of 5G promises high bandwidth with the introduction of mmWave technology recently, paving the way for throughput-sensitive applications. However, our measurements in commercial 5G networks show that frequent handovers in 5G, due to physical limitations of mmWave cells, introduce significant under-utilization of the available bandwidth. By analyzing 5G link-layer and TCP traces, we uncover that improper interactions between these two layers causes multiple inefficiencies during handovers. To mitigate these, we propose M2HO, a novel device-centric solution that can predict and recognize different stages of a handover and perform state-dependent mitigation to markedly improve throughput. M2HO is transparent to the firmware, base stations, servers, and applications. We implement M2HO and our extensive evaluations validate that it yields significant improvements in TCP throughput with frequent handovers.
|confname = IDEA
|confname =MobiCom'24
|link = https://uestc.feishu.cn/file/Pbq3bWgKJoTQObx79f3cf6gungb
|link = https://dl.acm.org/doi/abs/10.1145/3636534.3690680
|title= ChirpVLC:Extending The Distance of Low-cost Visible Light Communication with CSS Modulation
|title= M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP
|speaker=Mengyu
|speaker=Jiacheng
|date=2024-12-06
|date=2025-01-03
}}
}}


{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:08, 3 January 2025

Time: 2025-01-03 10:30-12:00
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [MobiCom'24] MuV2: Scaling up Multi-user Mobile Volumetric Video Streaming via Content Hybridization and Sharing, Jiyi
    Abstract: Volumetric videos offer a unique interactive experience and have the potential to enhance social virtual reality and telepresence. Streaming volumetric videos to multiple users remains a challenge due to its tremendous requirements of network and computation resources. In this paper, we develop MuV2, an edge-assisted multi-user mobile volumetric video streaming system to support important use cases such as tens of students simultaneously consuming volumetric content in a classroom. MuV2 achieves high scalability and good streaming quality through three orthogonal designs: hybridizing direct streaming of 3D volumetric content with remote rendering, dynamically sharing edge-transcoded views across users, and multiplexing encoding tasks of multiple transcoding sessions into a limited number of hardware encoders on the edge. MuV2 then integrates the three designs into a holistic optimization framework. We fully implement MuV2 and experimentally demonstrate that MuV2 can deliver high-quality volumetric videos to over 30 concurrent untethered mobile devices with a single WiFi access point and a commodity edge server.
  2. [MobiCom'24] M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP, Jiacheng
    Abstract: The advent of 5G promises high bandwidth with the introduction of mmWave technology recently, paving the way for throughput-sensitive applications. However, our measurements in commercial 5G networks show that frequent handovers in 5G, due to physical limitations of mmWave cells, introduce significant under-utilization of the available bandwidth. By analyzing 5G link-layer and TCP traces, we uncover that improper interactions between these two layers causes multiple inefficiencies during handovers. To mitigate these, we propose M2HO, a novel device-centric solution that can predict and recognize different stages of a handover and perform state-dependent mitigation to markedly improve throughput. M2HO is transparent to the firmware, base stations, servers, and applications. We implement M2HO and our extensive evaluations validate that it yields significant improvements in TCP throughput with frequent handovers.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}