Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
Line 8: Line 8:


{{Latest_seminar
{{Latest_seminar
|abstract = Immersive telepresence has the potential to revolutionize remote communication by offering a highly interactive and engaging user experience. However, state-of-the-art exchanges large volumes of 3D content to achieve satisfactory visual quality, resulting in substantial Internet bandwidth consumption. To tackle this challenge, we introduce MagicStream, a first-of-its-kind semantic-driven immersive telepresence system that effectively extracts and delivers compact semantic details of captured 3D representation of users, instead of traditional bit-by-bit communication of raw content. To minimize bandwidth consumption while maintaining low end-to-end latency and high visual quality, MagicStream incorporates the following key innovations: (1) efficient extraction of user's skin/cloth color and motion semantics based on lighting characteristics and body keypoints, respectively; (2) novel, real-time human body reconstruction from motion semantics; and (3) on-the-fly neural rendering of users' immersive representation with color semantics. We implement a prototype of MagicStream and extensively evaluate its performance through both controlled experiments and user trials. Our results show that, compared to existing schemes, MagicStream can drastically reduce Internet bandwidth usage by up to 1195X while maintaining good visual quality.
|abstract = Entanglement distribution across remote distances is critical for many quantum applications. Currently, the de facto approach for remote entanglement distribution relies on optical fiber for on-the-ground entanglement distribution. However, the fiber-based approach is incapable of global-scale entanglement distribution due to intrinsic limitations. This paper investigates a new hybrid ground-satellite quantum network architecture (QuESat) for global-scale entanglement distribution, integrating an on-the-ground fiber network with a global-scale passive optical network built with low-Earth-orbit satellites. The satellite network provides dynamic construction of photon lightpaths based on near-vacuum beam guides constructed via adjustable arrays of lenses, forwarding photons from one ground station to another with very high efficiency over long distances compared to using fiber. To assess the feasibility and effectiveness of QuESat for global communication, we formulate lightpath provisioning and entanglement distribution problems, considering the orbital dynamics of satellites and the time-varying entanglement demands from ground users. A two-stage algorithm is developed to dynamically configure the beam guides and distribute entanglements, respectively. The algorithm combines randomized and deterministic rounding for lightpath provisioning to enable global connectivity, with optimal entanglement swapping for distributing entanglements to meet users' demands. By developing a ground-satellite quantum network simulator, QuESat achieves multi-fold improvements compared to repeater networks.
|confname = Sensys'24
|confname = INFOCOM'25
|link = https://dl.acm.org/doi/10.1145/3666025.3699344
|link = https://ieeexplore.ieee.org/document/11044649
|title= MagicStream: Bandwidth-conserving Immersive Telepresence via Semantic Communication
|title= QuESat: Satellite-Assisted Quantum Internet for Global-Scale Entanglement Distribution
|speaker= Mengfan Wang
|speaker= Yaliang
|date=2025-10-31
|date=2025-11-07
}}{{Latest_seminar
}}{{Latest_seminar
|abstract =To fulfill computing demands of numerous Internet of Things (IoT) devices in infrastructure-free regions, low earth orbit (LEO) satellite edge computing has been proposed in recent years, to circumvent the latency arising from long backhaul and link congestion in traditional cloud computing mode. This article proposes a novel time-varying graph-based collaborative task offloading strategy for LEO satellite IoT to reduce task computing latency. To this end, a computing coordinate graph (CCG) is designed to characterize the time-varying topology and resource distribution of LEO satellite networks. When a task is offloaded to LEO satellite networks because local computing capability is unable to meet latency constraint, the position of the task access satellite in the CCG is determined first. Then, the expanded hop counts from all satellite nodes to the access satellite are calculated, which informs the partitioning of different node sets. Afterwards, considering both link and on-board computing resources, with the access satellite as the reference node, the minimum total task computing latency for each node set is obtained in an ascending order of the expanded hop counts. Finally, the minimum one among obtained latency values is the anticipated total task computing latency. Simulation results demonstrate the effectiveness of the proposed task offloading strategy in reducing task computing latency.
|abstract =The global business of transnational enterprises demands geo-distributed databases, where the leader-follower-based consensus protocols are the key to guaranteeing consistency of replicas spread across regions. Compared with traditional databases running in a single data center, determining which node is the leader in consensus protocol has a greater per-formance impact in geo-distributed databases running across multiple data centers. However, the performance of legacy leader management is far from satisfactory due to the network and application dynamics (e.g., network delay, node popularity, operation read-write ratio). This paper proposes GeoLM toward performance-oriented leader management for geo-distributed consensus protocols. GeoLM captures the network and application dynamics and proactively conducts seamless leader handovers with bounded switching costs. Our geo-distributed experimental results show that GeoLM improves performance up to 49.75% over the baselines (e.g., Raft and Geo-Raft) and achieves considerably good performance compared to state-of-the-art consensus protocols (e.g., SwiftPaxos, CURP, and EPaxos).
|confname = Systems Joural
|confname = INFOCOM'25
|link = https://ieeexplore.ieee.org/document/11024019
|link = https://ieeexplore.ieee.org/document/11044598
|title= Collaborative Task Offloading for LEO Satellite Internet of Things: A Novel Computing Coordinate Graph-Based Approach
|title= GeoLM: Performance-oriented Leader Management for Geo-Distributed Consensus Protocol
|speaker= Yifei Zhou
|speaker= Linqi Liu
|date=2025-10-31
|date=2025-11-07
}}
}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 01:51, 7 November 2025

Time: 2025-10-24 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [INFOCOM'25] QuESat: Satellite-Assisted Quantum Internet for Global-Scale Entanglement Distribution, Yaliang
    Abstract: Entanglement distribution across remote distances is critical for many quantum applications. Currently, the de facto approach for remote entanglement distribution relies on optical fiber for on-the-ground entanglement distribution. However, the fiber-based approach is incapable of global-scale entanglement distribution due to intrinsic limitations. This paper investigates a new hybrid ground-satellite quantum network architecture (QuESat) for global-scale entanglement distribution, integrating an on-the-ground fiber network with a global-scale passive optical network built with low-Earth-orbit satellites. The satellite network provides dynamic construction of photon lightpaths based on near-vacuum beam guides constructed via adjustable arrays of lenses, forwarding photons from one ground station to another with very high efficiency over long distances compared to using fiber. To assess the feasibility and effectiveness of QuESat for global communication, we formulate lightpath provisioning and entanglement distribution problems, considering the orbital dynamics of satellites and the time-varying entanglement demands from ground users. A two-stage algorithm is developed to dynamically configure the beam guides and distribute entanglements, respectively. The algorithm combines randomized and deterministic rounding for lightpath provisioning to enable global connectivity, with optimal entanglement swapping for distributing entanglements to meet users' demands. By developing a ground-satellite quantum network simulator, QuESat achieves multi-fold improvements compared to repeater networks.
  2. [INFOCOM'25] GeoLM: Performance-oriented Leader Management for Geo-Distributed Consensus Protocol, Linqi Liu
    Abstract: The global business of transnational enterprises demands geo-distributed databases, where the leader-follower-based consensus protocols are the key to guaranteeing consistency of replicas spread across regions. Compared with traditional databases running in a single data center, determining which node is the leader in consensus protocol has a greater per-formance impact in geo-distributed databases running across multiple data centers. However, the performance of legacy leader management is far from satisfactory due to the network and application dynamics (e.g., network delay, node popularity, operation read-write ratio). This paper proposes GeoLM toward performance-oriented leader management for geo-distributed consensus protocols. GeoLM captures the network and application dynamics and proactively conducts seamless leader handovers with bounded switching costs. Our geo-distributed experimental results show that GeoLM improves performance up to 49.75% over the baselines (e.g., Raft and Geo-Raft) and achieves considerably good performance compared to state-of-the-art consensus protocols (e.g., SwiftPaxos, CURP, and EPaxos).

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}