Resource: Seminar

From MobiNetS
Revision as of 21:55, 16 October 2025 by Qinyong (talk | contribs)
Jump to: navigation, search

Time: 2025-09-25 10:30
Address: 4th Research Building A518
Useful links: 📚 Readling list; 📆 Schedules; 🧐 Previous seminars.

Latest

  1. [Arxiv] HyperCam: Low-Power Onboard Computer Vision for IoT Cameras, Menghao Liu
    Abstract: We present HyperCam, an energy-efficient image classification pipeline that enables computer vision tasks onboard low-power IoT camera systems. HyperCam leverages hyperdimensional computing to perform training and inference efficiently on low-power microcontrollers. We implement a low-power wireless camera platform using off-the-shelf hardware and demonstrate that HyperCam can achieve an accuracy of

93.60%, 84.06%, 92.98%, and 72.79% for MNIST, Fashion-MNIST, Face Detection, and Face Identification tasks, respectively, while significantly outperforming other classifiers in resource efficiency. \revSpecifically, it delivers inference latency of 0.08-0.27s while using 42.91-63.00KB flash memory and 22.25KB RAM at peak. Among other machine learning classifiers such as SVM, xgBoost, MicroNets, MobileNetV3, and MCUNetV3, HyperCam is the only classifier that achieves competitive accuracy while maintaining competitive memory footprint and inference latency that meets the resource requirements of low-power camera systems.

  1. [SIGCOMM'25 (short paper)] NIER: Practical Neural-enhanced Low-bitrate Video Conferencing, Xinyan Wang
    Abstract: We present NIER, a video conferencing system that can adaptively maintain a low bitrate (e.g., 10–100 Kbps) with reasonable visual quality while being robust to packet losses. We use key-point-based deep image animation (DIA) as a key building block and address a series of networking and system challenges to make NIER practical. Our evaluations show that NIER significantly outperforms the baseline solutions.

History

|abstract =The rapid expansion of large language models (LLMs) requires the development of extensive GPU clusters, with companies deploying clusters with tens to hundreds of thousands of GPUs. This growth significantly expands the design space for LLM training systems, requiring thorough exploration of different parallelization strategies, communication parameters, congestion control, fabric topology, etc. Current methods require up to 10k simulation experiments to identify optimal configurations, with inadequate exploration leading to significant degradation of training performance. In this paper, we tackle the overlooked problem of efficiently conducting parallel simulation experiments for design space exploration. Our

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}