Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(18 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''Thursday 16:20-18:00'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Global-scale IPv6 scan, critical for network measurement and management, is still a mission to be accomplished due to its vast address space. To tackle this challenge, IPv6 scan generally leverages pre-defined seed addresses to guide search directions. Under this general principle, however, the core problem of effectively using the seeds is largely open. In this work, we propose a novel IPv6 active search strategy, namely HMap6, which significantly improves the use of seeds, w.r.t. the marginal benefit, for large-scale active address discovery in various prefixes. Using a heuristic search strategy for efficient seed collection and alias prefix detection under a wide range of BGP prefixes, HMap6 can greatly expand the scan coverage. Real-world experiments over the Internet in billion-scale scans show that HMap6 can discover 29.39M unique /80 prefixes with active addresses, an 11.88% improvement over the state-of-the-art methods. Furthermore, the IPv6 hitlists from HMap6 include all-responsive IPv6 addresses with rich information. This result sharply differs from existing public IPv6 hitlists, which contain non-responsive and filtered addresses, and pushes the IPv6 hitlists from quantity to quality. To encourage and benefit further IPv6 measurement studies, we released our tool along with our IPv6 hitlists and the detected alias prefixes.
|abstract=We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
|confname=INFOCOM '23
|confname=MobiCom 2023
|link=https://ieeexplore.ieee.org/abstract/document/10229089
|link=https://dl.acm.org/doi/10.1145/3570361.3592523
|title=Search in the Expanse: Towards Active and Global IPv6 Hitlists
|title=NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras
|speaker=Xinyu
|speaker=Jiyi
|date=2023-11-2}}
|date=2024-04-12}}
{{Latest_seminar
{{Latest_seminar
|abstract=LoRa networks have been deployed in many orchards for environmental monitoring and crop management. An accurate propagation model is essential for efficiently deploying a LoRa network in orchards, e.g., determining gateway coverage and sensor placement. Although some propagation models have been studied for LoRa networks, they are not suitable for orchard environments, because they do not consider the shadowing effect on wireless propagation caused by the ground and tree canopies. This paper presents FLog, a propagation model for LoRa signals in orchard environments. FLog leverages a unique feature of orchards, i.e., all trees have similar shapes and are planted regularly in space. We develop a 3D model of the orchards. Once we have the location of a sensor and a gateway, we know the mediums that the wireless signal traverse. Based on this knowledge, we generate the First Fresnel Zone (FFZ) between the sender and the receiver. The intrinsic path loss exponents (PLE) of all mediums can be combined into a classic Log-Normal Shadowing model in the FFZ. Extensive experiments in almond orchards show that FLog reduces the link quality estimation error by 42.7% and improves gateway coverage estimation accuracy by 70.3%, compared with a widely-used propagation model.
|abstract=The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
|confname=IPSN '23
|confname=Neurips 2017
|link=https://dl.acm.org/doi/10.1145/3583120.3586969
|link=https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
|title=Link Quality Modeling for LoRa Networks in Orchards
|title=Attention Is All You Need
|speaker=Jiacheng
|speaker=Qinyong
|date=2023-11-02}}
|date=2024-04-12}}
{{Latest_seminar
|abstract=Quality of Experience (QoE) is one of the most important quality indicators for video streaming applications. But it is still an open question how to assess QoE value objectively and quantitatively over continuous time both for academia and industry. In this paper, we carry out an extensive data study on user behaviors in one of the largest short-video service providers. The measurement data reveals that the user’s exiting behavior in viewing video streams is an appropriate choice as a continuous-time QoE metric. Secondly, we build a quantitative QoE model to objectively assess the quality of video playback by discretizing the playback session into the Markov chain. By collecting 7 billion viewing session logs which cover users from 20 CDN providers and 40 Internet service providers, the proposed state-chain-based model of State-Exiting Ratio (SER) is validated. The experimental results show that the modeling error of SER and session duration are less than 2% and 10s respectively. By using the proposed scheme to optimize adaptive video streaming, the average session duration is improved up to 60% to baseline, and 20% to the existing black-box-like machine learning methods.
|confname=INFOCOM '23
|link=https://ieeexplore.ieee.org/document/10228896
|title=Rebuffering but not Suffering: Exploring Continuous-Time Quantitative QoE by User’s Exiting Behaviors
|speaker=Jiajun
|date=2023-11-02}}
{{Latest_seminar
|abstract=The resource efficiency of video analytics workloads is critical for large-scale deployments on edge nodes and cloud clusters. Recent advanced systems have benefited from techniques including video compression, frame filtering, and deep model acceleration. However, based on our year-long experience of operating a real-time video analytics system on more than 1000 cameras, we identified a previously overlooked bottleneck of end- to-end concurrency: video decoding. To support concurrent video inference at scale, in this work, we investigate a new task, named video packet gating, which selectively filters packets before running a decoder. We propose a
novel multi-view embedding approach for video packets and present PacketGame that has both theoretical performance guarantee and practical system designs. Experiments on both public datasets and a real system show PacketGame saves 52.0-79.3% decoding costs and achieves 2.1-4.8× concurrency compared to original workloads. Comparisons with four state-of-the-art complementary methods show the superiority of PacketGame in end-to-end concurrency.
|confname=SIGCOMM '23
|link=https://yuanmu97.github.io/preprint/packetgame_sigcomm23.pdf
|title=PacketGame: Multi-Stream Packet Gating for Concurrent Video Inference at Scale
|speaker=Shuhong
|date=2023-11-02}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 15:10, 9 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom 2023] NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras, Jiyi
    Abstract: We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
  2. [Neurips 2017] Attention Is All You Need, Qinyong
    Abstract: The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}