Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2024-03-22 10:30-12:00'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A518
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=We develop a Multi-Agent Reinforcement Learning (MARL) method to learn scalable control policies for target tracking. Our method can handle an arbitrary number of pursuers and targets; we show results for tasks consisting up to 1000 pursuers tracking 1000 targets. We use a decentralized, partially-observable Markov Decision Process framework to model pursuers as agents receiving partial observations (range and bearing) about targets which move using fixed, unknown policies. An attention mechanism is used to parameterize the value function of the agents; this mechanism allows us to handle an arbitrary number of targets. Entropy-regularized off-policy RL methods are used to train a stochastic policy, and we discuss how it enables a hedging behavior between pursuers that leads to a weak form of cooperation in spite of completely decentralized control execution. We further develop a masking heuristic that allows training on smaller problems with few pursuers-targets and execution on much larger problems. Thorough simulation experiments and comparisons to state of the art algorithms are performed to study the scalability of the approach and robustness of performance to varying numbers of agents and targets.
|abstract=We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
|confname=IROS 2021
|confname=MobiCom 2023
|link=https://ieeexplore.ieee.org/abstract/document/9636344
|link=https://dl.acm.org/doi/10.1145/3570361.3592523
|title=Scalable Reinforcement Learning Policies for Multi-Agent Control
|title=NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras
|speaker=Xianyang
|speaker=Jiyi
|date=2024-03-22}}
|date=2024-04-12}}
{{Latest_seminar
{{Latest_seminar
|abstract=With the popularity of LED infrastructure and the camera on smartphone, LED-Camera visible light communication (VLC) has become a realistic and promising technology. However, the existing LED-Camera VLC has limited throughput due to the sampling manner of camera. In this paper, by introducing a polarization dimension, we propose a hybrid modulation scheme with LED and polarization signals to boost throughput. Nevertheless, directly mixing LED and polarized signals may suffer from channel conflict. We exploit well-designed packet structure and Symmetric Return-to-Zero Inverted (SRZI) coding to overcome the conflict. In addition, in the demodulation of hybrid signal, we alleviate the noise caused by polarization on the LED signals by polarization background subtraction. We further propose a pixel-free approach to correct the perspective distortion caused by the shift of view angle by adding polarizers around the liquid crystal array. We build a prototype of this hybrid modulation scheme using off-the-shelf optical components. Extensive experimental results demonstrate that the hybrid modulation scheme can achieve reliable communication, achieving 13.4 kbps throughput, which is 400 % of the existing state-of-the-art LED-Camera VLC.
|abstract=The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
|confname=INFOCOM 2023
|confname=Neurips 2017
|link=https://ieeexplore.ieee.org/document/10228936/
|link=https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
|title=Breaking the Throughput Limit of LED-Camera Communication via Superposed Polarization
|title=Attention Is All You Need
|speaker=Mengyu
|speaker=Qinyong
|date=2024-03-22}}
|date=2024-04-12}}
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 15:10, 9 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom 2023] NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras, Jiyi
    Abstract: We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low power (1.1 mW) but only outputs grey-scale, low resolution and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods.
  2. [Neurips 2017] Attention Is All You Need, Qinyong
    Abstract: The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}