Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
(154 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-11-26 8:40
|time='''Friday 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}


===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Resource provisioning in multi-tenant stream processing systems faces the dual challenges of keeping resource utilization high (without over-provisioning), and ensuring performance isolation. In our common production use cases, where streaming workloads have to meet latency targets and avoid breaching service-level agreements, existing solutions are incapable of handling the wide variability of user needs. Our framework called Cameo uses fine-grained stream processing (inspired by actor computation models), and is able to provide high resource utilization while meeting latency targets. Cameo dynamically calculates and propagates priorities of events based on user latency targets and query semantics. Experiments on Microsoft Azure show that compared to state-of-the-art, the Cameo framework: i) reduces query latency by 2.7X in single tenant settings, ii) reduces query latency by 4.6X in multi-tenant scenarios, and iii) weathers transient spikes of workload.
|abstract=Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.
|confname= NSDI 2021
|confname=SIGCOMM 2020
|link=https://www.usenix.org/system/files/nsdi21spring-xu.pdf
|link=https://dl.acm.org/doi/10.1145/3387514.3405853
|title=Move Fast and Meet Deadlines: Fine-grained Real-time Stream Processing with Cameo
|title=Concurrent Entanglement Routing for Quantum Networks: Model and Designs
|speaker=Jianfei
|speaker=Yaliang
}}
|date=2024-04-28}}
{{Latest_seminar
|abstract = Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
|confname= ICML 2021
|link= https://arxiv.org/pdf/2105.10056.pdf
|title=Data-Free Knowledge Distillation for Heterogeneous Federated Learning
|speaker=Jianqi
}}
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:45, 28 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM 2020] Concurrent Entanglement Routing for Quantum Networks: Model and Designs, Yaliang
    Abstract: Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}