Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
(61 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-06 9:30'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Many opportunistic routing (OR) schemes treat network nodes equally, neglecting the fact that the nodes close to the sink undertake more duties than the rest of the network nodes. Therefore, the nodes located at different positions should play different roles during the routing process. Moreover, considering various Quality-of-Service (QoS) requirements, the routing decision in OR is affected by multiple network attributes. The majority of these OR schemes fail to contemplate multiple network attributes while making routing decisions. To address the aforesaid issues, this paper presents a novel protocol that runs in three steps. First, each node defines a Routing Zone (RZ) to route packets toward the sink. Second, the nodes within RZ are prioritized based on the competency value obtained through a novel model that employs Modified Analytic Hierarchy Process (MAHP) and Fuzzy Logic techniques. Finally, one of the forwarders is selected as the final relay node after forwarders coordination. Through extensive experimental simulations, it is confirmed that FLORA achieves better performance compared to its counterparts in terms of energy consumption, overhead packets, waiting times, packet delivery ratio, and network lifetime.
|abstract=Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.
|confname=TMC2022
|confname=SIGCOMM 2020
|link=https://ieeexplore.ieee.org/document/9410408/
|link=https://dl.acm.org/doi/10.1145/3387514.3405853
|title=FLORA: Fuzzy Based Load-Balanced Opportunistic Routing for Asynchronous Duty-Cycled WSNs
|title=Concurrent Entanglement Routing for Quantum Networks: Model and Designs
|speaker=Luwei}}
|speaker=Yaliang
{{Latest_seminar
|date=2024-04-28}}
|abstract = With the wide adoption of AI applications, there is a pressing need of enabling real-time neural network (NN) inference on small embedded devices, but deploying NNs and achieving high performance of NN inference on these small devices is challenging due to their extremely weak capabilities. Although NN partitioning and offloading can contribute to such deployment, they are incapable of minimizing the local costs at embedded devices. Instead, we suggest to address this challenge via agile NN offloading, which migrates the required computations in NN offloading from online inference to offline learning. In this paper, we present AgileNN, a new NN offloading technique that achieves real-time NN inference on weak embedded devices by leveraging eXplainable AI techniques, so as to explicitly enforce feature sparsity during the training phase and minimize the online computation and communication costs. Experiment results show that AgileNN's inference latency is >6X lower than the existing schemes, ensuring that sensory data on embedded devices can be timely consumed. It also reduces the local device's resource consumption by >8X, without impairing the inference accuracy.
|confname=MobiCom 2022
|link=https://dl.acm.org/doi/abs/10.1145/3495243.3560551
|title=Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI
|speaker=Crong}}
{{Latest_seminar
|abstract = Interoperability among a vast number of heterogeneous IoT nodes is a key issue. However, the communication among IoT nodes does not fully interoperate to date. The underlying reason is the lack of a lightweight and unified network architecture for IoT nodes having different radio technologies. In this paper, we design and implement TinyNet, a lightweight, modular, and unified network architecture for representative low-power radio technologies including 802.15.4, BLE, and LoRa. The modular architecture of TinyNet allows us to simplify the creation of new protocols by selecting specific modules in TinyNet. We implement TinyNet on realistic IoT nodes including TI CC2650 and Heltec IoT LoRa nodes. We perform extensive evaluations. Results show that TinyNet (1) allows interoperability at or above the network layer; (2) allows code reuse for multi-protocol co-existence and simplifies new protocols design by module composition; (3) has a small code size and memory footprint.
|confname=MobiSys 2022
|link=https://dl.acm.org/doi/abs/10.1145/3498361.3538919
|title=TinyNET: a lightweight, modular, and unified network architecture for the internet of things
|speaker=Xinyu}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:45, 28 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM 2020] Concurrent Entanglement Routing for Quantum Networks: Model and Designs, Yaliang
    Abstract: Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}