Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
m
(48 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-04-20 9:30'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract =Low-power wireless networks have the potential to enable applications that are of great importance to industry and society. However, existing network protocols do not meet the dependability requirements of many scenarios as the failure of a single node or link can completely disrupt communication and take significant time and energy to recover. This paper presents Hydra, a low-power wireless protocol that guarantees robust communication despite arbitrary node and link failures. Unlike most existing deterministic protocols, Hydra steers clear of centralized coordination to avoid a single point of failure. Instead, all nodes are equivalent in terms of protocol logic and configuration, performing coordination tasks such as synchronization and scheduling concurrently. This concept of concurrent coordination relies on a novel distributed consensus algorithm that yields provably unique decisions with low delay and energy overhead. In addition to a theoretical analysis, we evaluate Hydra in a multi-hop network of 23 nodes. Our experiments demonstrate that Hydra withstands random node failures without increasing coordination overhead and that it re-establishes efficient and reliable data exchange within seconds after a major disruption.
|abstract=Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.
|confname=IPSN 2023
|confname=SIGCOMM 2020
|link=https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/602741/ipsn23-22.pdf?sequence=1&isAllowed=y
|link=https://dl.acm.org/doi/10.1145/3387514.3405853
|title=Hydra: Concurrent Coordination for Fault-tolerant Networking
|title=Concurrent Entanglement Routing for Quantum Networks: Model and Designs
|speaker=Pengfei}}
|speaker=Yaliang
{{Latest_seminar
|date=2024-04-28}}
|abstract = We report our experiences of developing, deploying, and evaluating MLoc, a smartphone-based indoor localization system for malls. MLoc uses Bluetooth Low Energy RSSI and geomagnetic field strength as fingerprints. We develop efficient approaches for large-scale, outsourced training data collection. We also design robust online algorithms for localizing and tracking users' positions in complex malls. Since 2018, MLoc has been deployed in 7 cities in China, and used by more than 1 million customers. We conduct extensive evaluations at 35 malls in 7 cities, covering 152K m2 mall areas with a total walking distance of 215 km (1,100 km training data). MLoc yields a median location tracking error of 2.4m. We further characterize the behaviors of MLoc's customers (472K users visiting 12 malls), and demonstrate that MLoc is a promising marketing platform through a promotion event. The e-coupons delivered through MLoc yield an overall conversion rate of 22%. To facilitate future research on mobile sensing and indoor localization, we have released a large dataset (43 GB at the time when this paper was published) that contains IMU, BLE, GMF readings, and the localization ground truth collected by trained testers from 37 shopping malls.
|confname=MobiCom 2022
|link=https://dl.acm.org/doi/pdf/10.1145/3495243.3517021
|title=Experience: practical indoor localization for malls
|speaker=Zhuoliu}}
{{Latest_seminar
|abstract = Low-earth-orbit (LEO) satellite mega-constellations promise broadband, low-latency network infrastructure from space for terrestrial users in remote areas. However, they face new QoS bottlenecks from infrastructure mobility due to the fast-moving LEO satellites and earth’s rotations. Both cause frequent space-ground link churns and challenge the network latency, bandwidth, and availability at the global scale. Today’s LEO networks mask infrastructure mobility with fixed anchors (ground stations) but cause single-point bandwidth/latency bottlenecks. Instead, we design LBP to remove the LEO network’s QoS bottlenecks from infrastructure mobility. LBP removes remote terrestrial fixed anchors via geographic addressing for shorter latencies and more bandwidth. It adopts local, orbit direction-aware geographic routing to avoid global routing updates for high network availability. LBP further shortens the routing paths by refining handover policies by satellites’ orbital directions. Our experiments in controlled testbeds and trace-driven emulations validate LBP’s 1.64× network latency reduction, 9.66× more bandwidth, and improve network availability to 100%.
|confname=IWQoS 2022
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796680
|title=Geographic Low-Earth-Orbit Networking without QoS Bottlenecks from Infrastructure Mobility
|speaker=Kun}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Revision as of 10:45, 28 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM 2020] Concurrent Entanglement Routing for Quantum Networks: Model and Designs, Yaliang
    Abstract: Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}