Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(183 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time=2021-09-17 8:40
|time='''Friday 10:30-12:00'''
|addr=Main Building B1-612
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract=Should you decide to launch a nano-satellite today in Low-Earth Orbit (LEO), the cost of renting ground station communication infrastructure is likely to significantly exceed your launch costs. While space launch costs have lowered significantly with innovative launch vehicles, private players, and smaller payloads, access to ground infrastructure remains a luxury. This is especially true for smaller LEO satellites that are only visible at any location for a few tens of minutes a day and whose signals are extremely weak, necessitating bulky and expensive ground station infrastructure. In this paper, we present a community-driven distributed reception paradigm for LEO satellite signals where signals received on many tiny handheld receivers (not necessarily deployed on rooftops but also indoors) are coherently combined to recover the desired signal. This is made possible by employing new synchronization and receiver orientation techniques that study satellite trajectories and leverage the presence of other ambient signals. We compare our results with a large commercial receiver deployed on a rooftop and show a 8 dB SNR increase both indoors and outdoors using 8 receivers, costing $38 per RF frontend.
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
|confname=MobiCom 2021
|confname=IPSN 2023
|link=https://dl.acm.org/doi/10.1145/3447993.3448630
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|title=A community-driven approach to democratize access to satellite ground stations
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|speaker=Kai Chen
|date=2024-05-10}}
{{Latest_seminar
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname=INFOCOM 2023
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Rong Cong
|speaker=Rong Cong
}}
|date=2024-05-10}}
{{Latest_seminar
|abstract=Sketch algorithms have been extensively studied in the area of network measurement, given their limited resource usage and theoretically bounded errors. However, error bounds provided by existing algorithms remain too coarse-grained: in practice, only a small number of flows (e.g., heavy hitters) actually benefit from the bounds, while the remaining flows still suffer from serious errors. In this paper, we aim to design nearly-zero-error sketch that achieves negligible per-flow error for almost all flows. We base our study on a technique named compressive sensing. We exploit compressive sensing in two aspects. First, we incorporate the near-perfect recovery of compressive sensing to boost sketch accuracy. Second, we leverage compressive sensing as a novel and uniform methodology to analyze various design choices of sketch algorithms. Guided by the analysis, we propose two sketch algorithms that seamlessly embrace compressive sensing to reach nearly zero errors. We implement our algorithms in OpenVSwitch and P4. Experimental results show that the two algorithms incur less than 0.1% per-flow error for more than 99.72% flows, while preserving the resource efficiency of sketch algorithms. The efficiency demonstrates the power of our new methodology for sketch analysis and design.
|confname=NSDI 2021
|link=https://www.usenix.org/system/files/nsdi21-huang.pdf
|title=Toward Nearly-Zero-Error Sketching via Compressive Sensing
|speaker=Xiong Wang
}}
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 20:19, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}