Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(145 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-3-11 10:20'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Cross-Technology Communication (CTC) is an emerging technique that enables direct interconnection among incompatible wireless technologies. Recent work proposes CTC from IEEE 802.11b to LoRa but has a low efficiency due to their extremely asymmetric data rates. In this paper, we propose WiRa that emulates LoRa waveforms with IEEE 802.11ax to achieve an efficient CTC from WiFi to LoRa. By taking advantage of the OFDMA in 802.11ax, WiRa can use only a small Resource Unit (RU) to emulate LoRa chirps and set other RUs free for highrate WiFi users. WiRa carefully selects the RU to avoid emulation failures and adopts WiFi frame aggregation to emulate the long LoRa frame. We propose a subframe header mapping method to identify and remove invalid symbols caused by irremovable
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
subframe headers in the aggregated frame. We also propose a mode flipping method to solve Cyclic Prefix errors, based on our finding that different CP modes have different and even opposite impacts on the emulation of a specific LoRa symbol. We implement a prototype of WiRa on the USRP platform and commodity LoRa device. The extensive experiments demonstrate WiRa can efficiently transmit complete LoRa frames with the throughput of 40.037kbps and the symbol error rate (SER) lower than 0.1.
|confname=IPSN 2023
|confname= INFOCOM 2022
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|link=https://www.jianguoyun.com/p/DQi5a8sQ_LXjBxj127EE
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|title=WiRa: Enabling Cross-Technology Communication from WiFi to LoRa with IEEE 802.11ax
|speaker=Kai Chen
|speaker=Kaiwen
|date=2024-05-10}}
}}
{{Latest_seminar
{{Latest_seminar
|abstract = Accurate, real-time object detection on resource-constrained devices enables autonomous mobile vision applications such as traffic surveillance, situational awareness, and safety inspection, where it is crucial to detect both small and large objects in crowded scenes. Prior studies either perform object detection locally on-board or offload the task to the edge/cloud. Local object detection yields low accuracy on small objects since it operates on low-resolution videos to fit in mobile memory. Offloaded object detection incurs high latency due to uploading high-resolution videos to the edge/cloud. Rather than either pure local processing or offloading, we propose to detect large objects locally while offloading small object detection to the edge. The key challenge is to reduce the latency of small object detection. Accordingly, we develop EdgeDuet, the first edge-device collaborative framework for enhancing small object detection with tile-level parallelism. It optimizes the offloaded detection pipeline in tiles rather than the entire frame for high accuracy and low latency. Evaluations on drone vision datasets under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet outperforms local object detection in small object detection accuracy by 233.0%. It also improves the detection accuracy by 44.7% and latency by 34.2% over the state-of-the-art offloading schemes.
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname= INFOCOM 2021
|confname=INFOCOM 2023
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488843
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Xianyang
|speaker=Rong Cong
}}
|date=2024-05-10}}
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 20:19, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}