Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(129 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2022-4-29 10:20'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = This paper presents EMU, a framework that enables the emulation, snipping, and multiplexing of LoRa chirps on commercial IoT devices equipped with low-power sub-GHz transceivers, including those supporting LoRa itself. Chirp snipping consists in artificially removing a sequence of chips and in putting the radio in low-power mode, which allows to reduce energy consumption while still communicating reliably. Chirp multiplexing exploits the gaps introduced by chirp snipping to transmit portions of another chirp on a separate channel, which allows to concurrently transmit two LoRa packets and to increase the throughput. We build EMU as a modular framework and implement support for off-the-shelf LoRa and non-LoRa transceivers. We then evaluate its performance by comparing the reliability, efficiency, and receiver sensitivity achieved by EMU with that of traditional LoRa for different physical layer settings. We finally showcase EMU’s ability to send packets over two channels simultaneously, thereby improving the uplink throughput of LoRaWAN, and demonstrate that even non-LoRa transceivers employing EMU can communicate to a LoRaWAN gateway, enabling new use cases and expanding the applicability of LoRa technology.
|abstract=Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.
|confname= IPSN 2022
|confname=SIGCOMM 2020
|link=http://www.carloalbertoboano.com/documents/yang22emu.pdf
|link=https://dl.acm.org/doi/10.1145/3387514.3405853
|title= EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing
|title=Concurrent Entanglement Routing for Quantum Networks: Model and Designs
|speaker=Wenliang
|speaker=Yaliang
}}
|date=2024-04-28}}
{{Latest_seminar
|abstract = Containers, originally designed for cloud environments, are increasingly popular for provisioning workers outside the cloud, for example in mobile and edge computing. These settings, however, bring new challenges: high latency links, limited bandwidth, and resource-constrained workers. The result is longer provisioning times when deploying new workers or updating existing ones, much of it due to network traffic. Our analysis shows that current piecemeal approaches to reducing provisioning time are not always sufficient, and can even make things worse as round-trip times grow. Rather, we find that the very same layer-based structure that makes containers easy to develop and use also makes it more difficult to optimize deployment. Addressing this issue thus requires rethinking the container deployment pipeline as a whole. Based on our findings, we present Starlight: an accelerator for container provisioning. Starlight decouples provisioning from development by redesigning the container deployment protocol, filesystem, and image storage format. Our evaluation using 21 popular containers shows that, on average, Starlight deploys and starts containers 3.0x faster than the current state-of-the-art implementation while incurring no runtime overhead and little (5%) storage overhead. Finally, it is backwards compatible with existing workers and uses standard container registries.
|confname= NSDI 2022
|link=https://www.usenix.org/system/files/nsdi22-paper-chen_jun_lin.pdf
|title=Starlight: Fast Container Provisioning on the Edge and over the WAN
|speaker=Jiangshu
}}
 
 
=== History ===
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 10:45, 28 April 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [SIGCOMM 2020] Concurrent Entanglement Routing for Quantum Networks: Model and Designs, Yaliang
    Abstract: Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}