Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(60 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-02-27 9:30'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Visible light communications (VLC) is a good candidate technology for the 6th generation (6G) wireless communications. Red, green, and blue (RGB) light-emitting diodes (LEDs) based VLC has become an important research branch due to its low price and high reliability. However, the saturation of photodiode (PD) caused by the ambient background light may seriously degrade the bit error rate (BER) performance of an RGB-VLC system's three spatially uncoupled information streams (i.e., red, green, and blue LEDs can transmit different data packets simultaneously) in practical applications. To mitigate the ambient light interference in point-to-point RGB-VLC systems, we propose, PNC-VLC, a network-coded scheme that uses two LEDs with the same color at the transmitter to transmit two different data streams and we make use of the naturally overlapped signals at the receiver to formulate physical-layer network coding (PNC). The adaptivity of PNC-VLC could effectively improve the BER degradation problem caused by the saturation of PD under the influence of ambient light. We conducted simulations based on the parameters of commercial off-the-shelf (COTS) products to prove the superiority of the PNC-VLC under the influence of four typical illuminants. Simulation results show that the PNC-VLC system can maintain a better and more stable system BER performance under different ambient background light conditions. Remarkably, with 2/3 throughput efficiency, PNC-VLC can bring 133.3% gain to the BER performance when compared with RGB-VLC under the Illuminant A interference model, making it a good option for VLC applications with unpredictable ambient background interferences.
|abstract=LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
|confname=IEEE Photonics Journal 2023
|confname=IPSN 2023
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10028767
|link=https://dl.acm.org/doi/10.1145/3583120.3586963
|title=Physical-Layer Network Coding Enhanced Visible Light Communications Using RGB LEDs
|title=FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks
|speaker=Jiahui}}
|speaker=Kai Chen
|date=2024-05-10}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing (MEC), as a key ingredient of the 5G ecosystem, is envisioned to support demanding applications with stringent latency requirements. The basic idea is to deploy servers close to end-users, e.g., on the network edge-side instead of the remote cloud. While conceptually reasonable, we find that the operational 5G is not coordinated with MEC and thus suffers from intolerable long response latency. In this work, we propose Tutti, which couples 5G RAN and MEC at the user space to assure the performance of latency-critical video analytics. To enable such capacity, Tutti precisely customizes the application service demand by fusing instantaneous wireless dynamics from the 5G RAN and application-layer content changes from edge servers. Tutti then enforces a deadline-sensitive resource provision for meeting the application service demand by real-time interaction between 5G RAN and edge servers in a lightweight and standard-compatible way. We prototype and evaluate Tutti on a software-defined platform, which shows that Tutti reduces the response latency by an average of 61.69% compared with the existing 5G MEC system, as well as negligible interaction costs.
|abstract=As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.
|confname=Mobicom 2022
|confname=INFOCOM 2023
|link=https://dl.acm.org/doi/pdf/10.1145/3498361.3539765
|link=https://ieeexplore.ieee.org/abstract/document/10228941/
|title=Tutti: coupling 5G RAN and mobile edge computing for latency-critical video analytics
|title=Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge
|speaker=Silience}}
|speaker=Rong Cong
 
|date=2024-05-10}}
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 20:19, 6 May 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [IPSN 2023] FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks, Kai Chen
    Abstract: LoRa has emerged as one of the promising long-range and low-power wireless communication technologies for Internet of Things (IoT). With the massive deployment of LoRa networks, the ability to perform Firmware Update Over-The-Air (FUOTA) is becoming a necessity for unattended LoRa devices. LoRa Alliance has recently dedicated the specification for FUOTA, but the existing solution has several drawbacks, such as low energy efficiency, poor transmission reliability, and biased multicast grouping. In this paper, we propose a novel energy-efficient, reliable, and beamforming-assisted FUOTA system for LoRa networks named FLoRa, which is featured with several techniques, including delta scripting, channel coding, and beamforming. In particular, we first propose a novel joint differencing and compression algorithm to generate the delta script for processing gain, which unlocks the potential of incremental FUOTA in LoRa networks. Afterward, we design a concatenated channel coding scheme to enable reliable transmission against dynamic link quality. The proposed scheme uses a rateless code as outer code and an error detection code as inner code to achieve coding gain. Finally, we design a beamforming strategy to avoid biased multicast and compromised throughput for power gain. Experimental results on a 20-node testbed demonstrate that FLoRa improves network transmission reliability by up to 1.51 × and energy efficiency by up to 2.65 × compared with the existing solution in LoRaWAN.
  2. [INFOCOM 2023] Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge, Rong Cong
    Abstract: As a promising infrastructure, edge storage systems have drawn many attempts to efficiently distribute and share data among edge servers. However, it remains open to meeting the increasing demand for similarity retrieval across servers. The intrinsic reason is that the existing solutions can only return an exact data match for a query while more general edge applications require the data similar to a query input from any server. To fill this gap, this paper pioneers a new paradigm to support high-dimensional similarity search at network edges. Specifically, we propose Prophet, the first known architecture for similarity data indexing. We first divide the feature space of data into plenty of subareas, then project both subareas and edge servers into a virtual plane where the distances between any two points can reflect not only data similarity but also network latency. When any edge server submits a request for data insert, delete, or query, it computes the data feature and the virtual coordinates; then iteratively forwards the request through greedy routing based on the forwarding tables and the virtual coordinates. By Prophet, similar high-dimensional features would be stored by a common server or several nearby servers. Compared with distributed hash tables in P2P networks, Prophet requires logarithmic servers to access for a data request and reduces the network latency from the logarithmic to the constant level of the server number. Experimental results indicate that Prophet achieves comparable retrieval accuracy and shortens the query latency by 55%~70% compared with centralized schemes.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}