Difference between revisions of "Resource:Seminar"

From MobiNetS
Jump to: navigation, search
(wenliang updates seminars)
 
(63 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SemNote
{{SemNote
|time='''2023-03-23 9:30'''
|time='''Friday 10:30-12:00'''
|addr=4th Research Building A527-B
|addr=4th Research Building A518
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
|note=Useful links: [[Resource:Reading_List|Readling list]]; [[Resource:Seminar_schedules|Schedules]]; [[Resource:Previous_Seminars|Previous seminars]].
}}
}}
Line 7: Line 7:
===Latest===
===Latest===
{{Latest_seminar
{{Latest_seminar
|abstract = Visible light communications (VLC) is a good candidate technology for the 6th generation (6G) wireless communications. Red, green, and blue (RGB) light-emitting diodes (LEDs) based VLC has become an important research branch due to its low price and high reliability. However, the saturation of photodiode (PD) caused by the ambient background light may seriously degrade the bit error rate (BER) performance of an RGB-VLC system's three spatially uncoupled information streams (i.e., red, green, and blue LEDs can transmit different data packets simultaneously) in practical applications. To mitigate the ambient light interference in point-to-point RGB-VLC systems, we propose, PNC-VLC, a network-coded scheme that uses two LEDs with the same color at the transmitter to transmit two different data streams and we make use of the naturally overlapped signals at the receiver to formulate physical-layer network coding (PNC). The adaptivity of PNC-VLC could effectively improve the BER degradation problem caused by the saturation of PD under the influence of ambient light. We conducted simulations based on the parameters of commercial off-the-shelf (COTS) products to prove the superiority of the PNC-VLC under the influence of four typical illuminants. Simulation results show that the PNC-VLC system can maintain a better and more stable system BER performance under different ambient background light conditions. Remarkably, with 2/3 throughput efficiency, PNC-VLC can bring 133.3% gain to the BER performance when compared with RGB-VLC under the Illuminant A interference model, making it a good option for VLC applications with unpredictable ambient background interferences.
|abstract=Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
|confname=IEEE Photonics Journal 2023
|confname=MobiCom'23
|link=https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10028767
|link=https://arxiv.org/pdf/2308.06053
|title=Physical-Layer Network Coding Enhanced Visible Light Communications Using RGB LEDs
|title=Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
|speaker=Jiahui}}
|speaker=Jiale
|date=2024-06-14}}
{{Latest_seminar
{{Latest_seminar
|abstract = Mobile edge computing (MEC), as a key ingredient of the 5G ecosystem, is envisioned to support demanding applications with stringent latency requirements. The basic idea is to deploy servers close to end-users, e.g., on the network edge-side instead of the remote cloud. While conceptually reasonable, we find that the operational 5G is not coordinated with MEC and thus suffers from intolerable long response latency. In this work, we propose Tutti, which couples 5G RAN and MEC at the user space to assure the performance of latency-critical video analytics. To enable such capacity, Tutti precisely customizes the application service demand by fusing instantaneous wireless dynamics from the 5G RAN and application-layer content changes from edge servers. Tutti then enforces a deadline-sensitive resource provision for meeting the application service demand by real-time interaction between 5G RAN and edge servers in a lightweight and standard-compatible way. We prototype and evaluate Tutti on a software-defined platform, which shows that Tutti reduces the response latency by an average of 61.69% compared with the existing 5G MEC system, as well as negligible interaction costs.
|abstract=Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.
|confname=Mobicom 2022
|confname=SEC'23
|link=https://dl.acm.org/doi/pdf/10.1145/3498361.3539765
|link=https://www.cs.hunter.cuny.edu/~sdebroy/publication-files/SEC2023_CR.pdf
|title=Tutti: coupling 5G RAN and mobile edge computing for latency-critical video analytics
|title=On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction
|speaker=Silience}}
|speaker=Yang Wang
{{Latest_seminar
|date=2024-06-14}}
|abstract = Domain-specific languages (DSLs) are languages tailored to a specific application domain. They offer substantial gains in expressiveness and ease of use compared with general-purpose programming languages in their domain of application. DSL development is hard, requiring both domain knowledge and language development expertise. Few people have both. Not surprisingly, the decision to develop a DSL is often postponed indefinitely, if considered at all, and most DSLs never get beyond the application library stage.Although many articles have been written on the development of particular DSLs, there is very limited literature on DSL development methodologies and many questions remain regarding when and how to develop a DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and implementation phases of DSL development. Our patterns improve and extend earlier work on DSL design patterns. We also discuss domain analysis tools and language development systems that may help to speed up DSL development. Finally, we present a number of open problems.
|confname=ACM Computing Surveys 2005
|link=https://dl.acm.org/doi/10.1145/1118890.1118892
|title=When and How to Develop Domain-Specific Languages
|speaker=Shu}}
 
 
 
=== History ===
 
{{Resource:Previous_Seminars}}
{{Resource:Previous_Seminars}}

Latest revision as of 15:22, 11 June 2024

Time: Friday 10:30-12:00
Address: 4th Research Building A518
Useful links: Readling list; Schedules; Previous seminars.

Latest

  1. [MobiCom'23] Cost-effective On-device Continual Learning over Memory Hierarchy with Miro, Jiale
    Abstract: Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.
  2. [SEC'23] On Balancing Latency and Quality of Edge-Native Multi-View 3D Reconstruction, Yang Wang
    Abstract: Multi-view 3D reconstruction driven augmented, virtual, and mixed reality applications are becoming increasingly edge-native, due to factors such as, rapid reconstruction needs, security/privacy concerns, and lack of connectivity to cloud platforms. Managing edge-native 3D reconstruction, due to edge resource constraints and inherent dynamism of ‘in the wild’ 3D environments, involves striking a balance between conflicting objectives of achieving rapid reconstruction and satisfying minimum quality requirements. In this paper, we take a deeper dive into multi-view 3D reconstruction latency-quality trade-off, with an emphasis on reconstruction of dynamic 3D scenes. We propose data-level and task-level parallelization of 3D reconstruction pipelines, holistic edge system optimizations to reduce reconstruction latency, and long-term minimum reconstruction quality satisfaction. The proposed solutions are validated through collection of real-world 3D scenes with varying degree of dynamism that are used to perform experiments on hardware edge testbed. The results show that our solutions can achieve between 50% to 75% latency reduction without violating long term minimum quality requirements.

History

2024

2023

2022

2021

2020

  • [Topic] [ The path planning algorithm for multiple mobile edge servers in EdgeGO], Rong Cong, 2020-11-18

2019

2018

2017

Template loop detected: Resource:Previous Seminars

Instructions

请使用Latest_seminar和Hist_seminar模板更新本页信息.

    • 修改时间和地点信息
    • 将当前latest seminar部分的code复制到这个页面
    • 将{{Latest_seminar... 修改为 {{Hist_seminar...,并增加对应的日期信息|date=
    • 填入latest seminar各字段信息
    • link请务必不要留空,如果没有link则填本页地址 https://mobinets.org/index.php?title=Resource:Seminar
  • 格式说明
    • Latest_seminar:

{{Latest_seminar
|confname=
|link=
|title=
|speaker=
}}

    • Hist_seminar

{{Hist_seminar
|confname=
|link=
|title=
|speaker=
|date=
}}